Search results for: social network ties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13669

Search results for: social network ties

10519 The Impact of Research Anxiety on Research Orientation and Interest in Research Courses in Social Work Students

Authors: Daniel Gredig, Annabelle Bartelsen-Raemy

Abstract:

Social work professionals should underpin their decisions with scientific knowledge and research findings. Hence, research is used as a framework for social work education and research courses have become a taken-for-granted component of study programmes. However, it has been acknowledged that social work students have negative beliefs and attitudes as well as frequently feelings of fear of research courses. Against this background, the present study aimed to establish the relationship between student’s fear of research courses, their research orientation and interest in research courses. We hypothesized that fear predicts the interest in research courses. Further, we hypothesized that research orientation (perceived importance and attributed usefulness for research for social work practice and perceived unbiased nature of research) was a mediating variable. In the years 2014, 2015 and 2016, we invited students enrolled for a bachelor programme in social work in Switzerland to participate in the study during their introduction day to the school taking place two weeks before their programme started. For data collection, we used an anonymous self-administered on-line questionnaire filled in on site. Data were analysed using descriptive statistics and structural equation modelling (generalized least squares estimates method). The sample included 708 students enrolled in a social work bachelor-programme, 501 being female, 184 male, and 5 intersexual, aged 19–56, having various entitlements to study, and registered for three different types of programme modes (full time programme; part time study with field placements in blocks; part time study involving concurrent field placement). Analysis showed that the interest in research courses was predicted by fear of research courses (β = -0.29) as well as by the perceived importance (β = 0.27), attributed usefulness of research (β = 0.15) and perceived unbiased nature of research (β = 0.08). These variables were predicted, in turn, by fear of research courses (β = -0.10, β = -0.23, and β = -0.13). Moreover, interest was predicted by age (β = 0.13). Fear of research courses was predicted by age (β = -0.10) female gender (β = 0.28) and having completed a general baccalaureate (β = -0.09). (GFI = 0.997, AGFI = 0.988, SRMR = 0.016, CMIN/df = 0.946, adj. R2 = 0.312). Findings evidence a direct as well as a mediated impact of fear on the interest in research courses in entering first-year students in a social work bachelor-programme. It highlights one of the challenges social work education in a research framework has to meet with. It seems, there have been considerable efforts to address the research orientation of students. However, these findings point out that, additionally, research anxiety in terms of fear of research courses should be considered and addressed by teachers when conceptualizing research courses.

Keywords: research anxiety, research courses, research interest, research orientation, social work students, teaching

Procedia PDF Downloads 188
10518 Ubudehe: A Social Work Analysis of Indigenous Solutions to Poverty Reduction in Post-Genocide Rwanda

Authors: Charles Rutikanga

Abstract:

As part of the effort to reconstruct Rwanda and foster a shared national identity after the 1994 genocide against Tutsi, the government of Rwanda has drawn on aspects of indigenous culture and traditional practices. One of these traditional practices and cultural values is Ubudehe, which has been re-introduced after it has been gradually lost since colonial times. It is a form of collective action at the village level, which is inclusive, covering men, women, and the most marginalized community members. The philosophy behind Ubudehe is to increase the level of participation and institutional problem-solving capacity at the local level by citizens and local government. Since the early 2000s, the government re-introduced Ubudehe as a neo-traditional cultural institution in order to support the implementation of the country’s poverty reduction and development programs. An empirical study on indigenous and innovative models of social work practice was conducted under the framework of the ‘Professional Social Work in East Africa’ (PROSOWO II) project. Field data were collected on traditional/indigenous approaches, including Ubudehe, from different categories of informants through focus group discussions (FGDs) and personal interviews. The research showed that professional social workers play a significant role in the whole Ubudehe process. While there have been some challenges in the administration and implementation, overall it has contributed to poverty reduction in a post-genocide Rwanda.

Keywords: development, indigenous approach, social work, Ubudehe

Procedia PDF Downloads 117
10517 Representation of Self and the Client in Social Work Students’ Report

Authors: Unity Nkateng

Abstract:

New forms of academic writing such as apprenticeship genres are developing in the field of applied linguistics. However, these perspectives have not adequately addressed the issue of social work students in Botswana. The paper addresses the issue of academic writing with special attention to the types of documents written by University of Botswana (UB) social work students on their fieldwork placement. The research method for this study combines two major research tools in the qualitative inquiry which are text analysis and interviews in order to investigate the context in which the texts are produced. 12 students were consulted and gave their consent for the study. 26 case reports were collected from the Department of Social work at the University of Botswana. The findings show that the case reports students write during their fieldwork placements have 6 moves, which focus on the clients’ story and describe what the students have done and achieved. The significance is that the discrepancy between professional writing and students writing raise questions about the extent to which students are being prepared for professional writing. Students have indicated that their academic writing varies according to the preferences of individual lecturers rather than the requirement of the work situation.

Keywords: apprenticeship genres, client's voice, material processes, relational possesive processes

Procedia PDF Downloads 243
10516 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 134
10515 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception

Authors: Christa L. Arnold, Margaret C. Stewart

Abstract:

This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.

Keywords: deception detection, online deception, social media content, statement analysis

Procedia PDF Downloads 65
10514 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
10513 Socially Sustainable Urban Rehabilitation Projects: Case Study of Ortahisar, Trabzon

Authors: Elif Berna Var

Abstract:

Cultural, physical, socio-economic, or politic changes occurred in urban areas might be resulted in the decaying period which may cause social problems. As a solution to that, urban renewal projects have been used in European countries since World War II whereas they have gained importance in Turkey after the 1980s. The first attempts were mostly related to physical or economic aspects which caused negative effects on social pattern later. Thus, social concerns have also started to include in renewal processes in developed countries. This integrative approach combining social, physical, and economic aspects promotes creating more sustainable neighbourhoods for both current and future generations. However, it is still a new subject for developing countries like Turkey. Concentrating on Trabzon-Turkey, this study highlights the importance of socially sustainable urban renewal processes especially in historical neighbourhoods where protecting the urban identity of the area is vital, as well as social structure, to create sustainable environments. Being in the historic city centre and having remarkable traditional houses, Ortahisar is an important image for Trabzon. Because of the fact that architectural and historical pattern of the area is still visible but need rehabilitations, it is preferred to use 'urban rehabilitation' as a way of urban renewal method for this study. A project is developed by the local government to create a secondary city centre and a new landmark for the city. But it is still ambiguous if this project can provide social sustainability of area which is one of the concerns of the research. In the study, it is suggested that social sustainability of an area can be achieved by several factors. In order to determine the factors affecting the social sustainability of an urban rehabilitation project, previous studies have been analysed and some common features are attempted to define. To achieve this, firstly, several analyses are conducted to find out social structure of Ortahisar. Secondly, structured interviews are implemented to 150 local people which aims to measure satisfaction level, awareness, the expectation of them, and to learn their demographical background in detail. Those data are used to define the critical factors for a more socially sustainable neighbourhood in Ortahisar. Later, the priority of those factors is asked to 50 experts and 150 local people to compare their attitudes and to find common criterias. According to the results, it can be said that social sustainability of Ortahisar neighbourhood can be improved by considering various factors like quality of urban areas, demographical factors, public participation, social cohesion and harmony, proprietorial factors, facilities of education and employment. In the end, several suggestions are made for Ortahisar case to promote more socially sustainable urban neighbourhood. As a pilot study highlighting the importance of social sustainability, it is hoped that this attempt might be the contributory effect on achieving more socially sustainable urban rehabilitation projects in Turkey.

Keywords: urban rehabilitation, social sustainability, Trabzon, Turkey

Procedia PDF Downloads 374
10512 Facebook Spam and Spam Filter Using Artificial Neural Networks

Authors: A. Fahim, Mutahira N. Naseem

Abstract:

SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

Keywords: artificial neural networks, facebook spam, social networking sites, spam filter

Procedia PDF Downloads 372
10511 Progress and Challenges of Smart Cities in India: An Exploratory Study

Authors: Sushil K. Sharma, Jeff Zhang, Saeed Tabar

Abstract:

Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation.

Keywords: smart city, smart government, Internet of Things, digital government

Procedia PDF Downloads 182
10510 Moving Target Defense against Various Attack Models in Time Sensitive Networks

Authors: Johannes Günther

Abstract:

Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.

Keywords: network security, time sensitive networking, moving target defense, cyber security

Procedia PDF Downloads 73
10509 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
10508 Investigating the Use of Social Media Channels When Capitalising on Ireland’s Appearance in US TV and Movies: A Digital Marketing Campaign

Authors: Colm Barcoe, Garvan Whelan

Abstract:

The purpose of this paper is to investigate the impact that US TV and movies have had on Irish tourism. This study examines how a destination marketing organisation (DMO) can use social media channels to capitalise upon the opportunities created by film tourism as it pertains to North American TV and movie productions. The findings are based on a combination of two qualitative methods, in-depth interviews with 20 industry professionals and a Netnographic analysis of social media activity between Tourism Ireland and the North American audience on Facebook and Twitter. The qualitative data were analysed in order to provide insights into the effectiveness of using North American pop culture as part of a digital marketing strategy when creating awareness of Ireland as a brand in the US and Canada. This study addresses a gap in the literature in relation to the use of social media when attracting the North American holidaymaker to Ireland. The findings from this investigation will extend an under-researched body of literature pertaining to Ireland as a destination and the successful digital marketing campaigns that have achieved exponential growth in this sector over the past five years. The empirical evidence presented also illustrates how the innovative use of social media has assisted the DMO to engage with the North American holidaymaker as part of an effective digital marketing strategy. This paper will be of value to academics and industry practitioners interested in film-induced tourism and indeed tourism in general, as well as students.

Keywords: digital marketing, tourism, strategies, movies, US TV

Procedia PDF Downloads 255
10507 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 27
10506 Citizenship Redefined? The Wider Exclusionary Dynamics of Migration Policy in the UK

Authors: Clive Sealey

Abstract:

This article will analyse the impact that the increasingly multicultural nature of the UK has had on the nature and direction of social policy. The increasingly multicultural nature of the UK is being driven by a variety of demographic changes, particularly increased net migration from EU10 and the EU 2 enlargement. This has become an increasingly political issue, as exemplified by the specific rise of the United Kingdom Independence Party as a political force with the primary intention of restricting such migration. Perhaps not surprisingly, this has also had a significant impact on the nature and direction of social policies, as evident in the prominence given to efforts to reducing immigration and to restrict welfare benefits paid to such migrants. These policies have largely reflected the retreat away from the emphasis in UK policy on multiculturalism towards assimilation for all migrants, both prior and newly domiciled. Linking these two main policy emphases of reducing immigration and limiting entitlement to benefits is the concept of citizenship. An important point that this article will highlight, is that this changed citizenship does not just relate to new migrants, but also to existing domiciled migrants, such as in relation to specifying the assimilation of ‘Britishness’ and ‘British values’ in their daily life. Additionally, the article also analyses how the changes in welfare entitlements for new migrants is also impacting in an exclusionary way on the living standards of the native population, and therefore also their social rights as citizens. The article discusses the implication that this change presents for social work practice, particularly in terms of both migrants and native population changed citizenship.

Keywords: migration, citizenship, exclusion, social policy, migrant welfare

Procedia PDF Downloads 376
10505 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
10504 Religiosity and Social Factors on Alcohol Use among South African University Students

Authors: Godswill Nwabuisi Osuafor, Sonto Maria Maputle

Abstract:

Background: Abounding studies found that religiosity and social factors modulate alcohol use among university students. However, there is a scarcity of empirical studies examining the protective effects of religiosity and other social factors on alcohol use and abuse in South African universities. The aim of this study was therefore to assess the protective effects of religiosity and roles of social factors on alcohol use among university students. Methodology: A survey on the use of alcohol among 416 university students was conducted using structured questionnaire in 2014. Data were sourced on religiosity and contextual variables. Students were classified as practicing intrinsic religiosity or extrinsic religiosity based on the response to the measures of religiosity. Descriptive, chi square and binary logistic analyses were used in processing the data. Result: Results revealed that alcohol use was associated with religiosity, religion, sex, family history of alcohol use and experimenting with alcohol. Reporting alcohol abuse was significantly predicted by sex, family history of alcohol use and experimenting with alcohol. Religiosity mediated lower alcohol use whereas family history of alcohol use and experimenting with alcohol promoted alcohol use and abuse. Conclusion: Families, religious groups and societal factors may be the specific niches for intervention on alcohol use among university students.

Keywords: religiosity, alcohol use, protective factors, university students

Procedia PDF Downloads 397
10503 A Discourse Study of Multimodal Intertextuality in Egyptian Social Media Memes

Authors: Ola Hafez

Abstract:

This study examines the way selected Egyptian digitally mediated memes utilize intertextuality as a means of expression. It is motivated by the emerging digital socio-political humorous practice using various forms of political commentary in Egyptian social media. One of these forms involves the use of memes incorporating (often doctored) video frames taken from Egyptian plays, films and songs, and relocated in a different socio-political context, often with a caption that re-appropriates the frame for the purpose of critical commentary, thus juxtaposing the socio-political phenomena being addressed and the Egyptian artistic and cultural heritage. The paper presents a discourse study of a convenience sample of a recent social media campaign and carries out two levels of analysis. At the micro level, the study pinpoints the various modes of intertextuality employed, including verbal as well as visual intertextuality in the light of the work of social semiotics by Kress and van Leeuwen. At the macro level, the paper sheds light on the socio-political implications of such practice in the light of Political Discourse Analysis.

Keywords: digitally mediated discourse, discourse analysis, Egyptian Arabic, intertextuality, memes, multimodality, political discourse analysis

Procedia PDF Downloads 217
10502 Invisible and Visible Helpers in Negotiating Child Parenting by Single Mothers: A Comparative Analysis of South Africa and Germany

Authors: Maud Mthembu, Tanusha Raniga, Michael Boecker

Abstract:

In South Africa and Germany, countless number of children are raised by single mothers with little or no support from the biological fathers. As evidenced in literature, having an involved father living at home can have a positive influence in the life of a child and the mother can be supported in her role. Often single parenting is seen as a causative factor in numerous psychological and social challenges which are faced by children from single-parent households, which is an indication of a pathological lens of viewing single parenting. The empirical data from our study reveals that single mothers in formal employment experience social, economic and emotional hardships of parenting. However, a sense of determination to raise healthy and well-balanced children using economic and social capital accessible to them was one of the key findings. The participants reported visible and invisible sources of support which creates an enabling environment for them to negotiate the challenges of parenting without support from non-residence fathers. Using a qualitative paradigm, a total of twenty professional single mothers were interviewed in Germany and South Africa. Four key themes emerged from the data analysis namely; internal locus of control, positive new experiences, access to economic capital and dependable social support. This study suggests that single mothers who are economically self-reliant and have access to bonding social capital are able to cope with the demands of single parenting. Understanding this multi-dimensional experience of parenting by single parents in formal employment is important to advocate for supportive working conditions for mothers.

Keywords: child parenting, child protection, single parenting, social capital

Procedia PDF Downloads 154
10501 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 448
10500 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 123
10499 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone

Procedia PDF Downloads 389
10498 The Red Persian Carpet: Iran as Semi-Periphery in China's Belt and Road Initiative-Bound World-System

Authors: Toufic Sarieddine

Abstract:

As the belt and road Initiative (henceforth, BRI) enters its 9th year, Iran and China are forging stronger ties on economic and military fronts, a development which has not only caused alarm in Washington but also risks staining China’s relationships with the oil-rich Gulf monarchies. World-systems theory has been used to examine the impact of the BRI on the current world order, with scholarship split on the capacity of China to emerge as a hegemon contending with the US or even usurping it. This paper argues the emergence of a new China-centered world-system comprised of states/areas and processes participating in the BRI and overlapping with the global world-system under (shaky) US hegemony. This world-system centers around China as core and hegemon via economic domination, capable new institutions (Shanghai Cooperation Council), legal modi operandi, the common goal of infrastructure development to rally support among developing states, and other indicators of hegemony outlined in world-systems theory. In this regard, while states like Pakistan could become peripheries to China in the BRI-bound world-system via large-scale projects such as the China-Pakistan Economic Corridor, Iran has greater capacities and influence in the Middle East, making it superior to a periphery. This paper thus argues that the increasing proximity between Iran and China sees the former becoming a semi-periphery with respect to China within the BRI-bound world-system, having economic dependence on its new core and hegemon while simultaneously wielding political and military influence on weaker states such as Iraq, Lebanon, Yemen, and Syria. The indicators for peripheralization as well as the characteristics of a semi-periphery outlined in world-systems theory are used to examine the current economic, political, and militaristic dimensions of Iran and China’s growing relationship, as well as the trajectory of these dimensions as part of the BRI-bound world-system.

Keywords: belt and road initiative, China, China-Middle East relations, Iran, world-systems analysis

Procedia PDF Downloads 155
10497 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 393
10496 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks

Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden

Abstract:

Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.

Keywords: location based-services, routing protocols, scalability, wireless sensor networks

Procedia PDF Downloads 372
10495 Mentoring Relationships as Social Capital in the Career Advancement of Women of Color

Authors: Ligia Alberto

Abstract:

This study examined the underrepresentation of women of color in school leadership roles. Using social capital as the theoretical framework, this study explored the role of mentoring relationships in the career advancement and promotion of Latina school leaders. This study showed that informal mentoring relationships are essential to the promotion of women of color. Most of the mentoring relationships were established through close work with their immediate supervisors. This study suggests having informal mentors facilitated Latina women's aspirations to become school leaders and counteract the pattern of underrepresentation of Latinas in such roles.

Keywords: women of color, school leadership, social capital, mentoring

Procedia PDF Downloads 94
10494 ‘It Is a Class Thing’: Socio-Economic Factors Sustaining Illicit Trading in New Naira Notes in Ibadan, Nigeria

Authors: Frank C. Amaechi, Adeyinka A. Aderinto, Usman A. Ojedokun, Oludayo Tade

Abstract:

Illicit trading in new naira notes has become a common practice in most communities in Nigeria despite the Central Bank Act’s in 2007 proscription of all forms of naira abuse. This study investigated the socio-economic factors sustaining illicit trading in new naira notes in Ibadan metropolis. The study was exploratory and cross-sectional in design. Neutralization theory was adopted as theoretical framework. Data were generated through the combination of in-depth interview and key informant interview methods. The purposive sampling technique was utilised to select five illicit traders of new naira notes, 32 patrons of the trade and six bank officials. Findings revealed that illicit trading in Nigeria’s national currency is flourishing because of the frequent demand for new naira notes that are not readily available in Nigerian banks. Also, the norm of cash spraying at social events is sustaining the illicit markets for new naira notes in Ibadan metropolis. In addition, a chain of network, comprising three principal actors, is behind the illegal business. A strict enforcement of the law banning cash spraying is advocated as a means of arresting this phenomenon.

Keywords: illicit trading, naira notes, national currency, Nigeria

Procedia PDF Downloads 311
10493 Sufism and Social Justice: Embodied Love in Action

Authors: Nazal Abdul Nasar RP

Abstract:

This paper explores the intersection of Sufism and social justice, examining how Sufi principles and practices inform and inspire activism, community engagement, and advocacy for human rights. Drawing on Islamic mystical texts, contemporary Sufi movements, and critical theory, this study argues that Sufism's emphasis on love, compassion, and unity provides a powerful framework for addressing systemic oppression and promoting collective liberation. Sufism, Islamic mysticism has long emphasized the importance of love, compassion, and unity. This paper explores how these principles can inform social justice work, particularly in the context of contemporary activism. Sufi teachings on ma'rifa (spiritual knowledge) emphasize the importance of spiritual awareness and self-reflection in social justice work. Fana (annihilation) informs strategies for addressing privilege and oppression by emphasizing ego annihilation and humility. Tawhid (unity) underlies efforts to build inclusive, equitable communities. Case studies of Sufi-inspired activism in the Middle East, North Africa, and South Asia demonstrate the potential of Sufi principles to inform social justice work. Examples include Sufi-led protests and grassroots organizing in Egypt and Turkey, Sufi women's empowerment initiatives in Morocco and Tunisia, and Sufi-inspired environmental activism in India and Pakistan. This research demonstrates the potential of Sufi principles to inform and inspire social justice activism. By embodying love, compassion, and unity, activists can address systemic oppression and promote collective liberation. The implications of this research include interfaith dialogue, community building, and activism. Future directions include integrating Sufi principles with critical theory, examining additional Sufi-inspired activism globally, and developing practical guidelines for Sufi-inspired social justice activism.

Keywords: sufism, social justice, islamic mysticism, ego annihilation, love, unity

Procedia PDF Downloads 17
10492 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks

Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi

Abstract:

Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.

Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks

Procedia PDF Downloads 529
10491 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 297
10490 Adopting a Stakeholder Perspective to Profile Successful Sustainable Circular Business Approaches: A Single Case Study

Authors: Charleen von Kolpinski, Karina Cagarman, Alina Blaute

Abstract:

The circular economy concept is often framed by politicians, scientists and practitioners as being the solution to sustainability problems of our times. However, the focus of these discussions and publications is very often set on environmental and economic aspects. In contrast, the social dimension of sustainability has been neglected and only a few recent and mostly conceptual studies targeted the inclusion of social aspects and the SDGs into circular economy research. All stakeholders of this new circular system have to be included to represent a truly sustainable solution to all the environmental, economic and social challenges caused by the linear economic system. Hence, this empirical research aims to analyse, next to the environmental and economic dimension, also explicitly the social dimension of a sustainable circular business model. This inductive and explorative approach applies the single case study method. A multi-stakeholder view is adopted to shed light on social aspects of the circular business model. Different stakeholder views, tensions between stakeholders and conflicts of interest are detected. In semi-structured interviews with different stakeholders of the company, this study compares the different stakeholder views to profile the success factors of its business model in terms of sustainability implementation and to detect its shortcomings. These findings result in the development of propositions which cover different social aspects of sustainable circular business model implementation. This study is an answer to calls for future empirical research about the social dimension of the circular economy and contributes to sustainable business model thinking in entrepreneurial contexts of the circular economy. It helps identifying all relevant stakeholders and their needs to successfully and inclusively implement a sustainable circular business model. The method of a single case study has some limitations by nature as it only covers one enterprise with its special business model. Therefore, more empirical studies are needed to research sustainable circular business models from multiple stakeholder perspectives, in different countries and industries. Future research can build upon the developed propositions of this study and develop hypotheses to be tested.

Keywords: circular economy, single case study, social dimension, sustainable circular business model

Procedia PDF Downloads 176