Search results for: optical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9736

Search results for: optical properties

6586 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy

Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz

Abstract:

Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.

Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach

Procedia PDF Downloads 133
6585 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 253
6584 Relationship between Functional Properties and Supramolecular Structure of the Poly(Trimethylene 2,5-Furanoate) Based Multiblock Copolymers with Aliphatic Polyethers or Aliphatic Polyesters

Authors: S. Paszkiewicz, A. Zubkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Over the last century, the world has become increasingly dependent on oil as its main source of chemicals and energy. Driven largely by the strong economic growth of India and China, demand for oil is expected to increase significantly in the coming years. This growth in demand, combined with diminishing reserves, will require the development of new, sustainable sources for fuels and bulk chemicals. Biomass is an attractive alternative feedstock, as it is widely available carbon source apart from oil and coal. Nowadays, academic and industrial research in the field of polymer materials is strongly oriented towards bio-based alternatives to petroleum-derived plastics with enhanced properties for advanced applications. In this context, 2,5-furandicarboxylic acid (FDCA), a biomass-based chemical product derived from lignocellulose, is one of the most high-potential biobased building blocks for polymers and the first candidate to replace the petro-derived terephthalic acid. FDCA has been identified as one of the top 12 chemicals in the future, which may be used as a platform chemical for the synthesis of biomass-based polyester. The aim of this study is to synthesize and characterize the multiblock copolymers containing rigid segments of poly(trimethylene 2,5-furanoate) (PTF) and soft segments of poly(tetramethylene oxide) (PTMO) with excellent elastic properties or aliphatic polyesters of polycaprolactone (PCL). Two series of PTF based copolymers, i.e., PTF-block-PTMO-T and PTF-block-PCL-T, with different content of flexible segments were synthesized by means of a two-step melt polycondensation process and characterized by various methods. The rigid segments of PTF, as well as the flexible PTMO/or PCL ones, were randomly distributed along the chain. On the basis of 1H NMR, SAXS and WAXS, DSC an DMTA results, one can conclude that both phases were thermodynamically immiscible and the values of phase transition temperatures varied with the composition of the copolymer. The copolymers containing 25, 35 and 45wt.% of flexible segments (PTMO) exhibited elastomeric property characteristics. Moreover, with respect to the flexible segments content, the temperatures corresponding to 5%, 25%, 50% and 90% mass loss as well as the values of tensile modulus decrease with the increasing content of aliphatic polyether or aliphatic polyester in the composition.

Keywords: furan based polymers, multiblock copolymers, supramolecular structure, functional properties

Procedia PDF Downloads 111
6583 Effect of Different Flours on the Physical and Sensorial Characteristics of Meatballs

Authors: Elif Aykin Dincer, Ozlem Kilic, Busra F. Bilgic, Mustafa Erbas

Abstract:

Stale breads and rusk flour are used traditionally in meatballs produced in Turkey as a structure enhancer. This study researches the possibilities of using retrograded wheat flour in the meatball production and compares the physical and sensorial characteristics of these meatballs with stale bread (traditional) and rusk (commercial) used meatballs. The cooking loss of meatballs produced with using retrograded flour was similar to that of commercial meatballs. These meatballs have an advantage with respect to cooking loss compared to traditional meatballs. Doses of retrograded flour from 5% to 20% led to a significant decrease in cooking loss, from 21.95% to 6.19%, and in the diameter of meatballs, from 18.60% to 12.74%, but to an increase in the thickness of meatballs, from 28.82% to 41.39%, respectively, compared to the control (0%). The springiness of the traditional meatballs was significantly higher than that of the other meatballs. This might have been due to the bread crumbs having a naturally springy structure. Moreover, the addition of retrograded flour in the meatballs significantly (P<0.05) affected the hardness, springiness and cohesiveness of the meatballs with respect to textural properties. In conclusion, it is considered that the use of 10% retrograded flour is ideal to improve the sensorial values of meatballs and the properties of their structure.

Keywords: cooking loss, flour, hardness, meatball, sensorial characteristics

Procedia PDF Downloads 268
6582 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 284
6581 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 487
6580 Effect of Marine Stress Starvation Conditions on Survival and Retention of the Properties of Potential Probiotic Bacillus Strains

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Pathogenic bacteria are considered to be responsible for several infectious diseases in aquaculture. To overcome diseases in fish culture, the use of antimicrobial drugs as strategy, have been adopted. The use of probiotic was a promising approach to avoid the risk associated to pathogenic bacteria. To find a biological control treatment against pathogens, we undertook this investigation to study the maintain of the probiotic properties of Bacillus sp., such as viability, adhesive ability to abiotic surface, antibacterial activity and pathogenicity/toxicity, under marine starvation conditions. Our data revealed that the tested strains maintained their capacity to inhibit pathogens in vivo and in vitro conditions. These strains maintain their adhesive capacity to polystyrene and do not demonstrate the pathogenic or toxic effect to the host. The obtained results give insight about the effect of starvation conditions on the physiological responses of these Bacillus strains that can be considered as a potential candidate’s probiotic.

Keywords: bacillus, probiotic, cell viability, starvation conditions

Procedia PDF Downloads 391
6579 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 133
6578 Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy

Authors: Siddhant Srivastav, Soumyaranjan Mishra, Sumanta Kumar Meher

Abstract:

Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors.

Keywords: anion exchange, asymmetric supercapacitor, supercapacitive charge-discharge, voltage drop

Procedia PDF Downloads 82
6577 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 60
6576 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 70
6575 Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering

Authors: Sandrine Cardinal, Jean-Marc Pelletier, Guang Xie, Florian Mercier, Florent Delmas

Abstract:

Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods.

Keywords: composite, mechanical properties, metallic glasses, spark plasma sintering

Procedia PDF Downloads 264
6574 Antibacterial and Antioxidant Activities of Artemisia herba-alba Asso Essential Oil Growing in M’sila (Algeria)

Authors: Asma Meliani, S. Lakehal, F. Z. Benrebiha, C. Chaouia

Abstract:

There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7%. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and three fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1, 1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil.

Keywords: Artemisia herba-alba, essential oil, antibacterial activity, antioxidant activity

Procedia PDF Downloads 312
6573 Sensory and Microbial Properties of Fresh and Canned Calocybe indica

Authors: Apotiola Z. O., Anyakorah C. I., Kuforiji O. O.

Abstract:

Sensory and microbial properties of fresh and canned Calocybe indica (milky mushroom) were evaluated. The mushroom was grown under a controlled environment with hardwood (Cola nitida) and rice bran substrate (4:1) canned in a brine solution of salt and citric acid. Analysis was carried out using standard methods. The overall acceptability ranged between 5.62 and 6.50, with sample S30 adjudged the best. In all, significant differences p<0.01 exist in the panelist judgment. Thus, the incorporation of salt and citric acid at 3.5g and 1.5g, respectively, improved sensory attributes such as texture, aroma, color, and overall acceptability. There was no coliform and fungi growth on the samples throughout the storage period. The bacterial count, on the other hand, was observed only in the fifth and sixth week of the storage period which varied between 0.2 to 0.9 x 103 cfu/g. The highest value was observed in sample S20 of the sixth week of storage, while the lowest value was recorded in sample S30 of the sixth week of storage. Based on 16S rRNA gene sequencing, bacterial species were taxonomically confirmed as Bacillus thuringiensis. The percentile compositions and Sequence ID of the bacterial species in the mushroom was 90%.

Keywords: bacterial count, microbial property, sensory, sawdust, texture

Procedia PDF Downloads 43
6572 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 198
6571 Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods

Authors: Jae-Il Jeong, Hoon-Jae Park, Jung-Woo Cho, Yang-Gon Kim, Jin-Young Park, Joo-Young Oh, Si-Geun Choi, Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653).

Keywords: laser deposition, bearing, white metal, mechanical properties

Procedia PDF Downloads 244
6570 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite

Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini

Abstract:

In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.

Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation

Procedia PDF Downloads 455
6569 Promoted Thermoelectric Properties of Polymers through Controlled Tie-Chain Incorporation

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

We have demonstrated a model system for the controlled incorporation of tie-chains into semicrystalline conjugated polymers using blends of different molecular weights that leads to a significant increase in electrical conductivity. Through careful assessment of the microstructural evolution upon tie chain incorporation we have demonstrated that no major changes in phase morphology or structural order in the crystalline domains occur and that the observed enhancement in electrical conductivity can only be explained consistently by tie chains facilitating the transport across grain boundaries between the crystalline domains. Here we studied the thermoelectric properties of aligned, ion exchange-doped ribbon phase PBTTT with blends of different molecular weight components. We demonstrate that in blended films higher electrical conductivities (up to 4810.1 S/cm), Seebeck coefficients and thermoelectric power factors of up to 172.6 μW m-1 K-2 can be achieved than in films with single component molecular weights. We investigate the underpinning thermoelectric transport physics, including structural and spectroscopic characterization, to better understand how controlled tie chain incorporation can be used to enhance the thermoelectric performance of aligned conjugated polymers.

Keywords: organic electronics, thermoelectrics, conjugated polymers, tie chain

Procedia PDF Downloads 41
6568 Diagnostic Properties of Exercise or Pharmacological Stress Myocardial Perfusion Scintigraphy in Per-Vessel Basis: A Clinical Validation Study

Authors: Ahmadreza Bagheri, Seyyed S. Eftekhari, Shervin Rashidinia

Abstract:

Background: Various stress tests have been proposed yet to assess patients with suspected coronary artery disease. However, their diagnostic properties in terms of sensitivity, specificity, and accuracy are variable and their applicability remained somewhat vague. The aim of this study is to validate per-vessel diagnostic properties of 3 types of stress myocardial perfusion scintigraphy in gated SPECT (Single-Photon Emission Computed Tomography) using either exercise or pharmacological stress testing with dipyridamole or dobutamine. Materials and Methods: Hospital records of 314 patients who referred to Imam Khomeini hospital of Tehran between September 2015 and January 2017 were completely reviewed in this study. All patients underwent coronary angiography within 3 months after stress myocardial perfusion scan. Eventually, the results were analyzed in per-vessel basis to find the proper modality for each involved vessel or scanned site. Results: The mean age of patients was 62.15 ± 4.94 years (30-85) and 35.03% were women. The overall sensitivity, specificity, and accuracy were calculated as 56.59%, 54.24%, and 55.09%, respectively. These values were 56.43% and 53.25%, 54.46% and 47.36%, 56.75% and 54.83% for dipyridamole and exercise, respectively. Ischemia of the anterior wall through exercise stress testing has the highest diagnostic accuracy in detecting LAD (Left Anterior Descending artery) involvement. Inferior wall hypokinesia and anterolateral wall ischemia during exercise stress testing have the highest diagnostic accuracy in detecting RCA (Right Coronary Artery) and LCX artery (Left Circumflex Artery) stenosis, respectively. Conclusion: Stress myocardial perfusion scan should be carried out on the basis of the findings of the preliminary investigations on suspicion of a specific coronary artery or involved myocardial wall.

Keywords: dipyridamole, dobutamine, single-photon emission computed tomography, stress myocardial perfusion scintigraphy

Procedia PDF Downloads 133
6567 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 153
6566 Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum

Authors: Radia Chemlal, Youcef Hamidi, Nabil Mameri

Abstract:

This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject.

Keywords: biosurfactant, pseudomonas luteola, whey, antiscorpionic serum, gas oil

Procedia PDF Downloads 78
6565 The Effect of Low Voltage Direct Current Applications on the Growth of Microalgae Chlorella Vulgaris

Authors: Osman Kök, İlhami̇ Tüzün, Yaşar Aluç

Abstract:

This study was conducted to explore the effect of direct current (DC) applications on the growth of microalgae Chlorella vulgaris KKU71, isolated from highly saline freshwater. Experiments were implemented based upon the cross-combinations of both the intensity and duration of electric applications, generating a full factorial design of 10V, 20V, 30V, and 5s, 30s, 60s, respectively. Growth parameters of cultures were monitored on Optical Density (OD), Cell Count (CC), Chlorophyll-a, b (Chl-a, b), and Total Carotenoids (TCar). All DC-assisted treatments stimulated the growth and thus led to higher values of growth parameters such as OD, CC, Chl-a, and TCar. Monotonically increasing with the intensity and duration of DC applications, wet and dry biomass yields of the harvested algae reached their highest level at 30V-60s in all sets of treatments. In addition, this increase between DC applications was listed as C(control)<10V<20V<30V and C<5s<30s<60s. As a result, direct current applications increased the biomass.

Keywords: Chlorella Vulgaris, direct current, growth, biomass

Procedia PDF Downloads 123
6564 Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food

Authors: Wilailak Siripornadulsil, Siriyanapat Tasaku, Jutamas Buahorm, Surasak Siripornadulsil

Abstract:

The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator and CaCO3 and gram-positive, catalase and oxidase negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt and heat, proteolytic, amylolytic and lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 and MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 and SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.

Keywords: probiotic, lactic acid bacteria, pathogen, protective culture

Procedia PDF Downloads 366
6563 Experimental and Numerical Investigation of Hardness and Compressive Strength of Hybrid Glass/Steel Fiber Reinforced Polymer Composites

Authors: Amar Patnaik, Pankaj Agarwal

Abstract:

This paper investigates the experimental study of hardness and compressive strength of hybrid glass/steel fiber reinforced polymer composites by varying the glass and steel fiber layer in the epoxy matrix. The hybrid composites with four stacking sequences HSG-1, HSG-2, HSG-3, and HSG-4 were fabricated by the VARTM process under the controlled environment. The experimentally evaluated results of Vicker’s hardness of the fabricated composites increases with an increase in the fiber layers sequence showing the high resistance. The improvement of micro-structure ability has been observed from the SEM study, which governs in the enhancement of compressive strength. The finite element model was developed on ANSYS to predict the above said properties and further compared with experimental results. The results predicted by the numerical simulation are in good agreement with the experimental results. The hybrid composites developed in this study was identified as the preferred materials due to their excellent mechanical properties to replace the conventional materialsused in the marine structures.

Keywords: finite element method, interfacial strength, polymer composites, VARTM

Procedia PDF Downloads 113
6562 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles

Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III

Abstract:

Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.

Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography

Procedia PDF Downloads 308
6561 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 316
6560 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 187
6559 Effects of Some Legume Flours and Gums on Some Properties of Turkish Noodle

Authors: Kübra Aktaş, Nermin Bilgiçli, Tayyibe Erten, Perihan Kübra Çiçek

Abstract:

In this research, different wheat-legume flour blends were used in Turkish noodle preparation with the aid of some gums (xanthan and guar). Chickpea, common bean and soy flours were used in noodle formulation at 20% level with and without gum (1%) addition. Some physical, chemical and sensory properties of noodles were determined. Water uptake, volume increase and cooking loss values of the noodles changed between 92.03-116.37%, 125.0-187.23% and 4.88-8.10%, respectively. Xanthan or guar gam addition decreased cooking loss values of legume fortified noodles. Both legume flour and gum addition significantly (p<0.05) affected the color values of the noodles. The lowest lightness (L*), redness (a*) and the highest yellowness (b*) values were obtained with soy flour usage in noodle formulation. Protein and ash values of noodles ranged between 15.14 and 21.82%; 1.62 and 2.50%, respectively, and the highest values were obtained with soy flour usage in noodle formulation. As a result of sensory evaluation, noodles containing chickpea flour and guar gum were rated with higher taste, odor, appearance and texture scores compared to other noodle samples.

Keywords: noodle, legume, soy, chickpea, common bean, gum

Procedia PDF Downloads 358
6558 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System

Authors: Jacob T. Liberty, Wilfred I. Okonkwo

Abstract:

The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.

Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage

Procedia PDF Downloads 289
6557 Polyhydroxybutyrate (PHB): Highly Porous Scaffold for Biomedicine

Authors: Neda Sinaei, Davood Zare, Mehrdad Azin

Abstract:

Polyhydroxyalkanoates (PHAs) are biocompatible and biodegradable polymers produced by a wide range of bacterial strains. These biopolymers are significantly studied for drug delivery and tissue engineering applications because of their fascinating physicochemical properties. Polyhydroxybutyrate (PHB) scaffold that has been extracted from a novel bacteria using oil wastewater was selected to study. Some physical parameters affecting scaffold properties such as PHB concentration, solvent evaporation speed, and ultrasonic time were investigated. Scanning electron microscopy was used to evaluate the porosity. Afterward, the biocompatibility of PHB scaffold was assessed. Initial results showed the highly porous PHB scaffold structure with a variety of pore sizes. Subsequent results indicated that more unique pore sizes can be obtained by optimizing physical factors. It would be noticed that the morphology of the pore structure was accordingly affected by ultrasonic time. Hence, In vitro cell viability tests on the PHB scaffold using human foreskin fibroblasts revealed strong cell attachment and proliferation supports. Therefore, it can be concluded that the cost-effective PHB scaffold has the potential using as a biomaterial cell adhesion substrate in therapeutic applications.

Keywords: Polyhydroxybutyrate, biocompatible, scaffold, porous, tissue engineering

Procedia PDF Downloads 204