Search results for: local stereo matching
2772 Applying WILSERV in Measuring Visitor Satisfaction at Sepilok Orangutan Rehabilitation Centre (SORC)
Authors: A. H. Hendry, H. S. Mogindol
Abstract:
There is an increasing worldwide demand on the field of interaction with wildlife tourism. Studies pertaining to the service quality within the sphere of interaction with wildlife tourism are plentiful. However, studies on service quality in wildlife attractions, especially on semi-captured wildlife tourism are still limited. The Sepilok Orangutan Rehabilitation Centre (SORC) in Sandakan, Sabah, Malaysia is one good example of a semi-captured wildlife attraction and a renowned attraction in Sabah. This study presents a gap analysis by measuring the perception and expectation of service quality at SORC through the use of a modified SERVQUAL, referred to as WILSERV. A survey questionnaire was devised and administered to 190 visitors who visited SORC. The study revealed that all the means of the six dimensions for perceived perceptions were lower than the expectations. The highest gap was from the dimension of reliability (-0.21), followed by tangible (-0.17), responsiveness (-0.11), assurance, (-0.11), empathy (-0.11) and wild-tangible (-0.05). Similarly, the study also showed that all six dimensions for perceived perceptions means were lower than the expectations for both local and foreign visitors.Keywords: importance performance analysis, service quality, WIL-SERV, wildlife tourism
Procedia PDF Downloads 2162771 Epidemiology, Knowledge, Attitude, and Practices among Patients of Stroke
Authors: Vijay nandmer, Ajay Nandmer
Abstract:
Stigmatized psycho-social perception poses a serious challenge and source of discrimination which impedes stroke patients from attaining a satisfactory quality of life. The present study was aimed to obtain information on knowledge, attitudes and practices (KAP) of stroke patients in the institute. We included 1000 people in our random sampling survey. Demographic details and responses to a questionnaire assessing the knowledge, attitude and practices were recorded. Although the majority of the patients belonged to low socioeconomic strata, the literacy rate was reasonably high (96.3%). A large majority (91.3%) of people had heard about stroke and (85.2%) knew that stroke can be treated with modern drugs. However, a negative attitude was reflected in the belief that stroke happens due to supernatural powers (hawa lagne se) (50.6%). Analysis of the data revealed regional differences in KAP which could be attributed to local Factors, such as literacy, awareness about stroke, and practice of different systems of medicine. Some of the differences can also be attributed to a category of study population whether it included patients or non-stroke individuals since the former are likely to have less negative attitudes than the public. There is a need to create awareness about stroke on a nation-wide basis to dispel the misconceptions and stigma through effective and robust programs with the aim to lessen the disease burden.Keywords: epidemiology, sroke, literacy, stroke
Procedia PDF Downloads 3892770 Reviewing the Relation of Language and Minorities' Rights
Authors: Mohsen Davarzani, Ehsan Lame, Mohammad Taghi Hassan Zadeh
Abstract:
Language is considered as a powerful and outstanding feature of ethnicity. However, humiliating and prohibiting using human language is one the most heinous and brutal acts in the form of racism. In other words, racism can be a product of physiological humiliations and discrimination, such as skin color, and can also be resulted from ethnic humiliation and discrimination such as language, customs and so on. Ethnic and racial discrimination is one of the main problems of the world that minorities and occasionally the majority have suffered from. Nowadays, few states can be found in which all individuals and its citizens are of the same race and ethnicity, culture and language. In these countries, referred to as the multinational states, (eg, Iran, Switzerland, India, etc.), there are the communities and groups which have their own linguistic, cultural and historical characteristics. Characteristics of human rights issues, diversity of issues and plurality of meanings indicate that they appear in various aspects. The states are obliged to respect, as per national and international obligations, the rights of all citizens from different angles, especially different groups that require special attention in order of the particular aspects such as ethnicity, religious and political minorities, children, women, workers, unions and in case the states are in breach of any of these items, they are faced with challenges in local, regional or international fields.Keywords: law, language, minorities, ethnicity
Procedia PDF Downloads 4182769 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank
Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh
Abstract:
Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI
Procedia PDF Downloads 1132768 The Challenges of Decentralised Education Policy for Teachers in Indonesian Contexts
Authors: Ahmad Ardillah Rahman
Abstract:
The decentralisation policy in education has been a trend in some countries in the last two decades. In Indonesia, the implementation of the policy has been introduced since 2003 with the occurrence of School-Based Management policy. The reform has affected the way principals and teachers should involve in school practices in which more autonomies and flexibilities are given to teachers in conducting their teaching practices. Almost 13 years since the policy was firstly introduced, the government and teachers in Indonesia still face some obstacles in maximising the potential benefits of the implementation of the decentralised education system. This study, thus, critically analyses the challenges of decentralised education policy for teachers in Indonesian education context. The purposes of this study are threefold. Firstly, it will explore the history of policy transformation from a centralised to a decentralised education policy. Secondly, it points out the advantages of the decentralised policy implementation. The last, it provides a comprehensive description of challenges faced by Indonesian teachers with the new roles in designing and implementing a curriculum. By using data from existing surveys and research, this study concludes that to successfully implement the transformation in the educational reform of Indonesia, continual and gradual teachers’ training, professional career pathway, and local monitoring for teachers should be developed and strengthened.Keywords: curriculum design, decentralisation, school-based management, teachers’ autonomy
Procedia PDF Downloads 3212767 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4542766 Economic Benefit of Wild Animals: A Possible Threat to Conservation in Ovia Southwest, Edo State, Nigeria
Authors: B. G. Oguntuase, M. O. Olofinsae
Abstract:
This study was carried out to assess the contribution of bush meat to Edo people’s livelihood and the consequence of utilization on conservation. Five markets were selected in Ovia Southwest local government area of Edo State, twenty bush meat sellers were selected from each market. Direct observations were made to document the composition of wild animals under sale in the study area. A total of one hundred questionnaires were administered to the respondents. The questionnaires were all retrieved and analyzed using descriptive analysis. The results show that thirteen animal species are being traded in the area. The price for the animal species (whole animal) ranged from N200 to N9,520. Respondents reported that there is a decline in the animal population over time. Between 64% and 95% of the respondents acknowledged population decline in seven of the thirteen animal species available for sale compared to what it used to be some ten years ago. Sales of wild animal species could be regarded as a profitable business in the rural community, supporting livelihood of the community, but could have devastating effect on conservation as already observed in this study if harvesting of wild animals is not regulated on controlled or sustainable basis.Keywords: conservation, economic benefits, hunting, population, wild animals
Procedia PDF Downloads 4692765 Developing an Interpretive Plan for Qubbet El-Hawa North Archaeological Site in Aswan, Egypt
Authors: Osama Amer Mohyeldin Mohamed
Abstract:
Qubbet el-Hawa North (QHN) is an example of an archaeological site in West-Aswan and It has not opened to the public yet and has been under excavation since its discovery in 2013 as a result of the illegal digging that happened in many sites in Egypt because of the unstable situation and the absence of security. The site has the potential to be one of the most attractive sites in Aswan. Moreover, it deserves to be introduced to the visitors in a good manner appropriate to its great significance. Both interpretation and presentation are crucial inseparable tools that communicate the archaeological site's significance to the public and raise their awareness. Moreover, it helps them to understand the past and appreciate archaeological assets. People will never learn or see anything from ancient remains unless it is explained. They would only look at it as ancient and charming. They expect a story, and more than knowledge, authenticity, or even supporting preservation actions, they want to enjoy and be entertained. On the other hand, a lot of archaeologists believe that planning an archaeological site for entertaining visitors deteriorates it and affects its authenticity. Thus, it represents a challenge to design a model for visitors’ experience that meets their expectations and needs while safeguarding the site’s integrity. The article presents a proposal for an interpretation plan for the site of Qubbet el-Hawa North.Keywords: heritage interpretation and presentation, archaeological site management, qubbet el-hawa North, local community engagement, accessibility
Procedia PDF Downloads 282764 Design of an Energy Efficient Electric Auto Rickshaw
Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar
Abstract:
Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment
Procedia PDF Downloads 2872763 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 1322762 Evaluation of the Quality of Care for Premature Babies in the Neonatology Unit of the Centre Hospitalier Universitaire de Kamenge
Authors: Kankurize Josiane, Nizigama Mediatrice
Abstract:
Introduction: Burundi records a still high infant mortality rate. Despite efforts to reduce it, prematurity is still the leading cause of death in the neonatal period. The objective of this study was to assess the quality of care for premature babies hospitalized in the neonatology unit of the Centre Hospitalier Universitaire de Kamenge. Method: This was a descriptive and evaluative prospective carried out in the neonatology unit of the CHUK (Centre Hospitalier Universitaire de Kamenge) from December 1, 2016, to May 31, 2017, including 70 premature babies, 65 mothers of premature babies and 15 providers including a pediatrician and 14 nurses. Using a tool developed by the World Health Organization and adapted to the local context by national experts, the quality of care for premature babies was assessed. Results: Prematurity accounted for 44.05% of hospitalizations in neonatology at the University Hospital of Kamenge. The assessment of the quality of care for premature babies was of low quality, with an average global score of 2/5 (50%), indicating that there is a considerable need for improvement to reach the standards. Conclusion: Efforts must be made to have infrastructures, materials, and human resources sufficient in quality and quantity so that the neonatology unit of the CHUK can be efficient and optimize the care of premature babies.Keywords: quality of care, evaluation, premature, standards
Procedia PDF Downloads 602761 Ecobiological Study of Olivier in the Northern Slopes of the Mountains of Tlemcen, Western Algeria
Authors: Hachemi Nouria
Abstract:
The olive tree is a Mediterranean tree, which belongs to the family Oleaceae. The Olea genus contains various species and subspecies, and the only species bearing edible fruit is Olea europaea. The desired issue in this study is to provide the current status of plant cover and especially the training in Olea europaea currently existing in the major centers of the region of Tlemcen. While based on the flora and biometric aspect of this plant germplasm. In order to make an assessment of the phytomass, we made measurements of the four parameters of the aerial part of the taxon: height, diameter, and canopy density to ten feet of the olive tree per station. The floristic analysis shows a certain floristic difference between the different stations. The vegetal formations reflect the biotic and abiotic conditions including climate affecting the ecosystem. Biometric study on the feet of Olea in the six study sites, has led us to conclude that the four measured parameters provides insight on the development or degradation of Olea feet depending on the layout of the stations and the factors environmental. We find that the terrains are havens for these assets. Also the local microclimate (Oued Thalweg) promotes the healthy development of this species.Keywords: olivier, ecology, biometrics, Tlemcen, Algeria
Procedia PDF Downloads 2962760 Delivery System Design of the Local Part to Reduce the Logistic Costs in an Automotive Industry
Authors: Alesandro Romero, Inaki Maulida Hakim
Abstract:
This research was conducted in an automotive company in Indonesia to overcome the problem of high logistics cost. The problem causes high of additional truck delivery. From the breakdown of the problem, chosen one route, which has the highest gap value, namely for RE-04. Research methodology will be started from calculating the ideal condition, making simulation, calculating the ideal logistic cost, and proposing an improvement. From the calculation of the ideal condition, box arrangement was done on the truck; the average efficiency was 97,4 % with three trucks delivery per day. Route simulation making uses Tecnomatix Plant Simulation software as a visualization for the company about how the system is occurred on route RE-04 in ideal condition. Furthermore, from the calculation of logistics cost of the ideal condition, it brings savings of Rp53.011.800,00 in a month. The last step is proposing improvements on the area of route RE-04. The route arrangement is done by Saving Method and sequence of each supplier with the Nearest Neighbor. The results of the proposed improvements are three new route groups, where was expected to decrease logistics cost Rp3.966.559,40 per day, and increase the average of the truck efficiency 8,78% per day.Keywords: efficiency, logistic cost, milkrun, saving methode, simulation
Procedia PDF Downloads 4462759 Examining the Acceptability of Destination Local Food by Domestic Tourist Visiting Northern Nigeria
Authors: Eldah Ephraim Buba, Jamila Mohammed Waziri
Abstract:
There are challenges faced by tourist in respect of choosing food while in tourism destination. Food is very important in the choice of holiday of tourist. Many tourists choose a destination not only because of physical attraction but they choose destination where they will not encounter challenges in respect to food. The study is aimed at examining the acceptability of northern delicacies by tourists from other parts of Nigeria. Six delicacies were produced and presented to 50 tourists who are randomly picked from the south-east, south-west, south-south and the middle belt of Nigeria. The study found out that Danwake, Masa, and Kwadon zogale were generally accepted by majority of the respondents. Although, the respondents were not comfortable with the appearance of danwake, other aspect of the checklist was accepted. Tuwon shinkafa miyan taushe was accepted in terms of appearance but rejected in terms of taste and texture. ‘Yar Tsame and dindikolo were generally rejected. The study recommended that caterers, attraction owners and hoteliers should include such meals in their menu so that tourist will enjoy the gastronomy of the northern part of Nigeria.Keywords: acceptability, examination, food, tourism
Procedia PDF Downloads 3862758 Describing Cognitive Decline in Alzheimer's Disease via a Picture Description Writing Task
Authors: Marielle Leijten, Catherine Meulemans, Sven De Maeyer, Luuk Van Waes
Abstract:
For the diagnosis of Alzheimer's disease (AD), a large variety of neuropsychological tests are available. In some of these tests, linguistic processing - both oral and written - is an important factor. Language disturbances might serve as a strong indicator for an underlying neurodegenerative disorder like AD. However, the current diagnostic instruments for language assessment mainly focus on product measures, such as text length or number of errors, ignoring the importance of the process that leads to written or spoken language production. In this study, it is our aim to describe and test differences between cognitive and impaired elderly on the basis of a selection of writing process variables (inter- and intrapersonal characteristics). These process variables are mainly related to pause times, because the number, length, and location of pauses have proven to be an important indicator of the cognitive complexity of a process. Method: Participants that were enrolled in our research were chosen on the basis of a number of basic criteria necessary to collect reliable writing process data. Furthermore, we opted to match the thirteen cognitively impaired patients (8 MCI and 5 AD) with thirteen cognitively healthy elderly. At the start of the experiment, participants were each given a number of tests, such as the Mini-Mental State Examination test (MMSE), the Geriatric Depression Scale (GDS), the forward and backward digit span and the Edinburgh Handedness Inventory (EHI). Also, a questionnaire was used to collect socio-demographic information (age, gender, eduction) of the subjects as well as more details on their level of computer literacy. The tests and questionnaire were followed by two typing tasks and two picture description tasks. For the typing tasks participants had to copy (type) characters, words and sentences from a screen, whereas the picture description tasks each consisted of an image they had to describe in a few sentences. Both the typing and the picture description tasks were logged with Inputlog, a keystroke logging tool that allows us to log and time stamp keystroke activity to reconstruct and describe text production processes. The main rationale behind keystroke logging is that writing fluency and flow reveal traces of the underlying cognitive processes. This explains the analytical focus on pause (length, number, distribution, location, etc.) and revision (number, type, operation, embeddedness, location, etc.) characteristics. As in speech, pause times are seen as indexical of cognitive effort. Results. Preliminary analysis already showed some promising results concerning pause times before, within and after words. For all variables, mixed effects models were used that included participants as a random effect and MMSE scores, GDS scores and word categories (such as determiners and nouns) as a fixed effect. For pause times before and after words cognitively impaired patients paused longer than healthy elderly. These variables did not show an interaction effect between the group participants (cognitively impaired or healthy elderly) belonged to and word categories. However, pause times within words did show an interaction effect, which indicates pause times within certain word categories differ significantly between patients and healthy elderly.Keywords: Alzheimer's disease, keystroke logging, matching, writing process
Procedia PDF Downloads 3662757 IT Perspective of Service-Oriented e-Government Enterprise
Authors: Anu Paul, Varghese Paul
Abstract:
The focal aspire of e-Government (eGovt) is to offer citizen-centered service delivery. Accordingly, the citizenry consumes services from multiple government agencies through national portal. Thus, eGovt is an enterprise with the primary business motive of transparent, efficient and effective public services to its citizenry and its logical structure is the eGovernment Enterprise Architecture (eGEA). Since eGovt is IT oriented multifaceted service-centric system, EA doesn’t do much on an automated enterprise other than the business artifacts. Service-Oriented Architecture (SOA) manifestation led some governments to pertain this in their eGovts, but it limits the source of business artifacts. The concurrent use of EA and SOA in eGovt executes interoperability and integration and leads to Service-Oriented e-Government Enterprise (SOeGE). Consequently, agile eGovt system becomes a reality. As an IT perspective eGovt comprises of centralized public service artifacts with the existing application logics belong to various departments at central, state and local level. The eGovt is renovating to SOeGE by apply the Service-Orientation (SO) principles in the entire system. This paper explores IT perspective of SOeGE in India which encompasses the public service models and illustrated with a case study the Passport service of India.Keywords: enterprise architecture, service-oriented e-Government enterprise, service interface layer, service model
Procedia PDF Downloads 5212756 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 1492755 Paleopalynology as an Analysis Tool to Measure the Resilience of the Ecosystems of the Western Mediterranean and Their Adaptation to Climate Change
Authors: F. Ismael Roman Moreno, Francisca Alba Sanchez
Abstract:
Over time, the plant landscape has changed as a result of the numerous events on a global and local scale that have happened. This is the case of the Mediterranean ecosystems, one of the most complex and rich in endemisms on the planet, subjected to anthropic pressures from the beginning of civilizations. The intervention in these systems together with climate changes has led to changes in diversity, tree cover, shrub, and ultimately in the structure and functioning of these ecosystems. Paleopalinology is used as a tool for analysis of pollen and non-pollen microfossils preserved in the flooded grasslands of the Middle Atlas (Morocco). This allows reconstructing the evolution of vegetation and climate, as well as providing data and reasoning to different ecological, cultural and historical processes. Although climatic and anthropic events are well documented in Europe, they are not so well documented in North Africa, which gives added value to the study area. The results obtained serve to predict the behavior and evolution of Mediterranean mountain ecosystems during the Holocene, their response to future changes, resilience, and recovery from climatic and anthropic disturbances. In the stratigraphic series analyzed, nine major events were detected, eight of which appeared to be of climatic and anthropic origin, and one unexpected, related to volcanic activity.Keywords: anthropic, Holocene, Morocco, paleopalynology, resilience
Procedia PDF Downloads 1652754 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation
Authors: Zheng Zhihao
Abstract:
Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation
Procedia PDF Downloads 332753 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory
Authors: Yin Yuanling
Abstract:
A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks
Procedia PDF Downloads 1442752 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 3402751 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 1592750 Ecosystem Post-Wildfires Effects of Thasos Island
Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes
Abstract:
Fires are one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperature regimes results on the increased levels of the intensity, frequency and the spread of fires inducing obstacles for the natural regeneration. Thasos Island is one of the Greek islands that have experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense flooding events. That also resulted to serious economic problems to the local communities and the ability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on the hydrology and soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.Keywords: erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires
Procedia PDF Downloads 3252749 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks
Authors: Riyadh Alsultani, Ali Majdi
Abstract:
It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design
Procedia PDF Downloads 942748 Deterrents in Tourism Development in Pakistan: A Case Study of Northern Areas
Authors: Qurat Ul Ain Bashir
Abstract:
Since the inception of Pakistan Tourism industry was not on developed level but afterwards 9/11 the tourism has declined rapidly in the country. Despite Northern areas full potential, rich historical and cultural heritage, natural beauty, museums, art galleries, hiking tracks, tourism is not getting that response in Pakistan, which it deserves. In fact Pakistan has been blessed with all the features that could make her a tourist destination. On the other side the attitude of the local people, socio-political condition, lack of facilities of international standards, media’s way of reporting about country, governments’ negligence etc has more adversely affected the international tourism than domestic tourism. From 2013 onward some developments in the said industry has been shown but that is not much encouraging. In 2017 approximately two million tourist visited Pakistan in comparison to 1.75 million in 2016. In the light of above debate the paper attempts to diagnose the causes which are not allowing the reasonable growth of tourism in Pakistan and suggests steps which must be taken to develop the industry through a large scale campaign and long term planning. The methodology about this research is quantitative with reference to description, analysis and recommendations. The material would be collected from the government publications, articles, surveys, tourist accounts, books, internet, magazines.Keywords: tourism, terrorism, barriers, infrastructure, culture, northern areas
Procedia PDF Downloads 1412747 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2922746 Enhanced Decolourization and Biodegradation of Textile Azo and Xanthene Dyes by Using Bacterial Isolates
Authors: Gimhani Madhushika Hewayalage, Thilini Ariyadasa, Sanja Gunawardena
Abstract:
In Sri Lanka, the largest contribution for the industrial export earnings is governed by textile and apparel industry. However, this industry generates huge quantities of effluent consists of unfixed dyes which enhance the effluent colour and toxicity thereby leading towards environmental pollution. Therefore, the effluent should properly be treated prior to the release into the environment. The biological technique has now captured much attention as an environmental-friendly and cost-competitive effluent decolourization method due to the drawbacks of physical and chemical treatment techniques. The present study has focused on identifying dye decolourizing potential of several bacterial isolates obtained from the effluent of the local textile industry. Yellow EXF, Red EXF, Blue EXF, Nova Black WNN and Nylosan-Rhodamine-EB dyes have been selected for the study to represent different chromophore groups such as Azo and Xanthene. The rates of decolorization of each dye have been investigated by employing distinct bacterial isolates. Bacterial isolate which exhibited effective dye decolorizing potential was identified as Proteus mirabilis using 16S rRNA gene sequencing analysis. The high decolorizing rates of identified bacterial strain indicate its potential applicability in the treatment of dye-containing wastewaters.Keywords: azo, bacterial, biological, decolourization, xanthene
Procedia PDF Downloads 2522745 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 1632744 Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam
Authors: Azeem Tariq, Stephane De Tourdonnet, Lars Stoumann Jensen, Reiner Wassmann, Bjoern Ole Sander, Quynh Duong Vu, Trinh Van Mai, Andreas De Neergaard
Abstract:
Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers.Keywords: adaptation, climate smart agriculture, constrainsts, smallholders
Procedia PDF Downloads 2662743 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 184