Search results for: learning table
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7698

Search results for: learning table

4548 Philippine National Police Strategies in the Implementation of 'Peace and Order Agenda for Transformation and Upholding of the Rule-Of-Law' Plan 2030

Authors: Ruby A. L. Espineli

Abstract:

The study assessed the Philippine National Police strategies in the implementation of ‘Peace and Order Agenda for Transformation and Upholding of the Rule-of-Law’ P.A.T.R.O.L Plan 2030. Its operational roadmap presents four perspectives which include resource management, learning and growth, process excellence; and community. Focused group discussion, observation, and distribution of survey questionnaire to selected PNP officers and community members were done to identify and describe the implementation, problems encountered and measures to address the problems of the PNP P.A.T.R.O.L Plan 2030. In resource management, PNP allocates most sufficient funds in providing service firearms, patrol vehicle, and internet connections. In terms of learning and growth, the attitude of PNP officers is relatively higher than their knowledge and skills. Moreover, in terms of process excellence, the PNP use several crime preventions and crime solution strategies to deliver an immediate response to calls of the community. As regards, community perspective, PNP takes effort in establishing partnership with community. It is also interesting to note that PNP officers and community were both undecided on the existence of problems encountered in the implementation of P.A.T.R.O.L Plan 2030. But, they had proactive behavior as they agreed on all the specified measures to address the problems encountered in implementation of PNP P.A.T.R.O.L. Plan 2030. A strategic framework, based on the findings was formulated in this study that could improve and entrench the harmonious working relationship between the PNP and stakeholders in the enhancement of the implementation of PNP P.A.T.R.O.L. Plan 2030.

Keywords: community perspectives, learning and growth, process excellence, resource management

Procedia PDF Downloads 235
4547 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 190
4546 Screen Casting Instead of Illegible Scribbles: Making a Mini Movie for Feedback on Students’ Scholarly Papers

Authors: Kerri Alderson

Abstract:

There is pervasive awareness by post secondary faculty that written feedback on course assignments is inconsistently reviewed by students. In order to support student success and growth, a novel method of providing feedback was sought, and screen casting - short, narrated “movies” of audio visual instructor feedback on students’ scholarly papers - was provided as an alternative to traditional means. An overview of the teaching and learning experience as well as the user-friendly software utilized will be presented. This study covers an overview of this more direct, student-centered medium for providing feedback using technology familiar to post secondary students. Reminiscent of direct personal contact, the personalized video feedback is positively evaluated by students as a formative medium for student growth in scholarly writing.

Keywords: education, pedagogy, screen casting, student feedback, teaching and learning

Procedia PDF Downloads 119
4545 The Effect of Cognitive Restructuring and Assertive Training on Improvement of Sexual Behavior of Secondary School Adolescents in Nigeria

Authors: Azu Kalu Oko, Ugboaku Nwanpka

Abstract:

The study investigated the effect of cognitive restructuring and assertive training on improvement of sexual behavior of secondary school adolescents in Nigeria. To guide the study, three research questions and four hypothesis were formulated. The study featured a 2X3 factorial design with a sample of 48 male and female students selected by random sampling using a table of random sample numbers. The three groups are assertive training, cognitive restructuring and control group. The study identified adolescents with deviant sexual behavior using Students Sexual Behavior Inventory (S.S.B.I.) as the research instrument. Ancova and T- Test statistic were used to analyze the data. The findings revealed that: I. Assertive Training and Cognitive Restructuring significantly improved sexual behavior of subjects at post test when compared with the control group. II. The treatment gains made by the two techniques were sustained at one month follow-up interval. III. Cognitive restructuring was more effective than assertiveness training in the improvement of the sexual behavior of students. Implication for education, psychotherapy and counseling were highlighted.

Keywords: cognitive restructuring, assertiveness training, adolescents, sexual behavior

Procedia PDF Downloads 587
4544 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 17
4543 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 352
4542 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
4541 Motivations for Using Social Networking Sites by College Students for Educational Purposes

Authors: Kholoud H. Al-Zedjali, Abir S. Al-Harrasi, Ali H. Al-Badi

Abstract:

Recently there has been a dramatic proliferation in the number of social networking sites (SNSs) users; however, little is published about what motivates college students to use SNSs in education. The main goal of this research is to explore the college students’ motives for using SNSs in education. A conceptual framework has therefore been developed to identify the main factors that influence/motivate students to use social networking sites for learning purposes. To achieve the research objectives a quantitative method was used to collect data. A questionnaire has been distributed amongst college students. The results reveal that social influence, perceived enjoyment, institute regulation, perceived usefulness, ranking up-lift, attractiveness, communication tools, free of charge, sharing material and course nature all play an important role in the motivation of college students to use SNSs for learning purposes.

Keywords: Social Networking Sites (SNSs), education, college students, motivations

Procedia PDF Downloads 263
4540 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 4
4539 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 200
4538 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children

Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix

Abstract:

Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.

Keywords: vision, attention, oculomotor processes, reading, preschoolers

Procedia PDF Downloads 147
4537 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis

Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam

Abstract:

This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.

Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning

Procedia PDF Downloads 77
4536 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
4535 Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry

Authors: Reynante E. Autida, Maria Ana T. Quimbo

Abstract:

The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well.

Keywords: case-based teaching, small-group learning, chemistry cases, chemistry achievement, critical thinking, chemistry attitude

Procedia PDF Downloads 297
4534 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term

Authors: R. Marhenke, M. Martini

Abstract:

The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.

Keywords: long-term memory, retroactive interference, attention, forgetting

Procedia PDF Downloads 132
4533 The Impact of Hosting an On-Site Vocal Concert in Preschool on Music Inspiration and Learning Among Preschoolers

Authors: Meiying Liao, Poya Huang

Abstract:

The aesthetic domain is one of the six major domains in the Taiwanese preschool curriculum, encompassing visual arts, music, and dramatic play. Its primary objective is to cultivate children’s abilities in exploration and awareness, expression and creation, and response and appreciation. The purpose of this study was to explore the effects of hosting a vocal music concert on aesthetic inspiration and learning among preschoolers in a preschool setting. The primary research method employed was a case study focusing on a private preschool in Northern Taiwan that organized a school-wide event featuring two vocalists. The concert repertoires included children’s songs, folk songs, and arias performed in Mandarin, Hakka, English, German, and Italian. In addition to professional performances, preschool teachers actively participated by presenting a children’s song. A total of 5 classes, comprising approximately 150 preschoolers, along with 16 teachers and staff, participated in the event. Data collection methods included observation, interviews, and documents. Results indicated that both teachers and children thoroughly enjoyed the concert, with high levels of acceptance when the program was appropriately designed and hosted. Teachers reported that post-concert discussions with children revealed the latter’s ability to recall people, events, and elements observed during the performance, expressing their impressions of the most memorable segments. The concert effectively achieved the goals of the aesthetic domain, particularly in fostering response and appreciation. It also inspired preschoolers’ interest in music. Many teachers noted an increased desire for performance among preschoolers after exposure to the concert, with children imitating the performers and their expressions. Remarkably, one class extended this experience by incorporating it into the curriculum, autonomously organizing a high-quality concert in the music learning center. Parents also reported that preschoolers enthusiastically shared their concert experiences at home. In conclusion, despite being a single event, the positive responses from preschoolers towards the music performance suggest a meaningful impact. These experiences extended into the curriculum, as firsthand exposure to performances allowed teachers to deepen related topics, fostering a habit of autonomous learning in the designated learning centers.

Keywords: concert, early childhood music education, aesthetic education, music develpment

Procedia PDF Downloads 49
4532 The Design and Development of Online Infertility Prevention Education in the Frame of Mayer's Multimedia Learning Theory

Authors: B. Baran, S. N. Kaptanoglu, M. Ocal, Y. Kagnici, E. Esen, E. Siyez, D. M. Siyez

Abstract:

Infertility is the fact that couples cannot have children despite 1 year of unprotected sexual life. Infertility can be considered as an important problem affecting not only sexual life but also social and psychological conditions of couples. Learning about information about preventable factors related to infertility during university years plays an important role in preventing a possible infertility case in older ages. The possibility to facilitate access to information with the internet has provided the opportunity to reach a broad audience in the diverse learning environments and educational environment. Moreover, the internet has become a basic resource for the 21st-century learners. Providing information about infertility over the internet will enable more people to reach in a short time. When studies conducted abroad about infertility are examined, interactive websites and online education programs come to the fore. In Turkey, while there is no comprehensive online education program for university students, it seems that existing studies are aimed to make more advertisements for doctors or hospitals. In this study, it was aimed to design and develop online infertility prevention education for university students. Mayer’s Multimedia Learning Theory made up the framework for the online learning environment in this study. The results of the needs analysis collected from the university students in Turkey who were selected with sampling to represent the audience for online learning contributed to the design phase. In this study, an infertility prevention online education environment designed as a 4-week education was developed by explaining the theoretical basis and needs analysis results. As a result; in the development of the online environment, different kind of visual aids that will increase teaching were used in the environment of online education according to Mayer’s principles of extraneous processing (coherence, signaling, spatial contiguity, temporal contiguity, redundancy, expectation principles), essential processing (segmenting, pre-training, modality principles) and generative processing (multimedia, personalization, voice principles). For example, the important points in reproductive systems’ expression were emphasized by visuals in order to draw learners’ attention, and the presentation of the information was also supported by the human voice. In addition, because of the limited knowledge of university students in the subject, the issue of female reproductive and male reproductive systems was taught before preventable factors related to infertility. Furthermore, 3D video and augmented reality application were developed in order to embody female and male reproductive systems. In conclusion, this study aims to develop an interactive Online Infertility Prevention Education in which university students can easily access reliable information and evaluate their own level of knowledge about the subject. It is believed that the study will also guide the researchers who want to develop online education in this area as it contains design-stage decisions of interactive online infertility prevention education for university students.

Keywords: infertility, multimedia learning theory, online education, reproductive health

Procedia PDF Downloads 170
4531 Implementation of a Program of Orientation for Travel Nursing Staff Based on Nurse-Identified Learning Needs

Authors: Olga C. Rodrigue

Abstract:

Long-term care and skilled nursing facilities experience ebbs and flows of nursing staffing, a problem compounded by the perception of the facilities as undesirable workplaces and competition for staff from other healthcare entities. Travel nurses are contracted to fill staffing needs due to increased admissions, increased and unexpected attrition of nurses, or facility expansion of services. Prior to beginning the contracted assignment, the travel nurse must meet industry, company, and regulatory requirements (The Joint Commission and CMS) for skills and knowledge. Travel nurses, however, inconsistently receive the pre-assignment orientation needed to work at the contracted facility, if any information is given at all. When performance expectations are not met, travel nurses may subsequently choose to leave the position without completing the terms of the contract, and some facilities may choose to terminate the contract prior to the expected end date. The overarching goal of the Doctor of Nursing Practice evidence-based practice improvement project is to provide travel nurses with the basic and necessary information to prepare them to begin a long-term and skilled nursing assignment. The project involves the identification of travel nurse learning needs through a survey and the development and provision of web-based learning modules to address those needs prior to arrival for a long-term and skilled nursing assignment.

Keywords: nurse staffing, travel nurse, travel staff, contract staff, contracted assignment, long-term care, skilled nursing, onboarding, orientation, staff development, supplemental staff

Procedia PDF Downloads 168
4530 Integration, a Tool to Develop Critical Thinking Skills of Undergraduate Veterinary Students

Authors: M. L. W. P. De Silva, R. A. C. Rabel, N. Smith, L. McIntyre, T. J Parkinson, K. A. N. Wijayawardhane

Abstract:

Curricular integration is an important concept in medical education for developing students’ ability to create connections between different medical disciplines. Problem-Based Learning (PBL) is one of the vehicles through which such integration can be achieved. During the recent review of the veterinary curriculum at the University of Peradeniya, a series of courses in Integrative Veterinary Science (IVS) were introduced, in which PBL was the primary teaching methodology. The objectives of this study were to evaluate students’ opinions on PBL as a teaching method: it should be noted that, within the context of secondary and tertiary education in Sri Lanka, this would be an entirely novel learning experience for the students. Opinions were sought at the conclusion of IVS sessions where students of semesters 2, 4, 6, and 7 (of an 8-semester program) were exposed to a two, 2-hour PBL-based case scenario. The PBL-based case scenario in semesters 2, 4, and 7 were delivered using material previously developed by an experienced PBL practitioner, whilst material for semester 6 was prepared de novo by a less experienced practitioner. Each student (semesters 2: n=38, 4: n=37, 6: n=55, and 7: n=40) completed a questionnaire which asked whether: (i) the course had improved their critical thinking skills; (ii) the learning environment was sufficiently comfortable to express/share student’s opinion; (iii) there was sufficient facilitator guidance; (iv) the online study environment enhanced learning; and (v) the students were overall satisfied with the PBL approach and IVS concept. Responses were given on a 5-point Likert-scale (strongly agree (SA), agree (A), neutral (N), disagree (D), and strongly disagree (SD)). SA and A responses were summed to provide an overall ‘satisfactory’ response. Results were subjected to frequency-distribution statistical analysis. A total of 88.5% of students gave SA+A scores to their overall satisfaction. The proportion of SA+A scores differed between different semesters, such that 95% of semester 2, 4, and 7 students gave SA+A scores, whereas only 69% of semester 6 students did so for their respective sessions. Overall, 96% of the students gave SA+A scores to the question relating to the improvement of critical thinking skills: semester 6 students’ scores were marginally, but not significantly, lower (91% SA+A) than those in other semesters. The difference of scores between semester 6 and the other semesters may be attributed to the different PBL-material used and/or the different experience levels of the practitioners that developed the study material. The use of PBL as a means of teaching IVS curriculum-integration courses was well-received by the students in terms of their overall satisfaction and their perceptions of improved critical thinking skills. Importantly, this was achieved in the face of a methodology that was entirely novel to the students. Finally, the delivery of the PBL medium was readily mastered by the practitioner to whom it was also a novel methodology.

Keywords: critical thinking skills, integration, problem based learning, veterinary education

Procedia PDF Downloads 133
4529 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch

Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane

Abstract:

Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.

Keywords: learning city, sustainable creative city, creative industry, good city form

Procedia PDF Downloads 310
4528 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 134
4527 The Impact of Using Technology Tools on Preparing English Language Learners for the 21st Century

Authors: Ozlem Kaya

Abstract:

21st-century learners are energetic and tech-savvy, and the skills and the knowledge required in this century are complex and challenging. Therefore, teachers need to find new ways to appeal to the needs and interests of their students and meet the demands of the 21st century at the same time. One way to do so in English language learning has been to incorporate various technology tools into classroom practices. Although teachers think these practices are effective and their students enjoy them, students may have different perceptions. To find out what students think about the use of technology tools in terms of developing 21st-century skills and knowledge, this study was conducted at Anadolu University School of Foreign Languages. A questionnaire was administered to 40 students at elementary level. Afterward, semi-structured interviews were held with 8 students to provide deeper insight into their perceptions. The details of the findings of the study will be presented and discussed during the presentation.

Keywords: 21st century skills, technology tools, perception, English Language Learning

Procedia PDF Downloads 294
4526 Supporting International Student’s Acculturation Through Chatbot Technology: A Proposed Study

Authors: Sylvie Studente

Abstract:

Despite the increase in international students migrating to the UK, the transition from home environment to a host institution abroad can be overwhelming for many students due to acculturative stressors. These stressors are reported to peak within the first six months of transitioning into study abroad which has determinantal impacts for Higher Education Institutions. These impacts include; increased drop-out rates and overall decreases in academic performance. Research suggests that belongingness can negate acculturative stressors through providing opportunities for students to form necessary social connections. In response to this universities have focussed on utilising technology to create learning communities with the most commonly deployed being social media, blogs, and discussion forums. Despite these attempts, the application of technology in supporting international students is still ambiguous. With the reported growing popularity of mobile devices among students and accelerations in learning technology owing to the COVID-19 pandemic, the potential is recognised to address this challenge via the use of chatbot technology. Whilst traditionally, chatbots were deployed as conversational agents in business domains, they have since been applied to the field of education. Within this emerging area of research, a gap exists in addressing the educational value of chatbots over and above the traditional service orientation categorisation. The proposed study seeks to extend upon current understandings by investigating the challenges faced by international students in studying abroad and exploring the potential of chatbots as a solution to assist students’ acculturation. There has been growing interest in the application of chatbot technology to education accelerated by the shift to online learning during the COVID-19 pandemic. Although interest in educational chatbots has surged, there is a lack of consistency in the research area in terms of guidance on the design to support international students in HE. This gap is widened when considering the additional challenge of supporting multicultural international students with diverse. Diversification in education is rising due to increases in migration trends for international study. As global opportunities for education increase, so does the need for multiculturally inclusive learning support.

Keywords: chatbots, education, international students, acculturation

Procedia PDF Downloads 44
4525 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University - Research Methodology and Preliminary Findings

Authors: Annette Cosgrove, Carina Ginty, Tony Hall, Cornelia Connolly

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitization of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence-based digital teaching model for use in a future pandemic. The research strategy undertaken for this study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially, feedback was collected and the research instrument was edited to reflect this feedback before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioner's views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology-enhanced learning and on teaching practice in a higher education institution. The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice. This study includes quantitative and qualitative methods to elicit data that will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments/data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers. This research is currently being conducted across the ATU multi-site campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a West of Ireland university, is the focus of the study. The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi-formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning. This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, technology, digital, education

Procedia PDF Downloads 81
4524 On the Construction of Some Optimal Binary Linear Codes

Authors: Skezeer John B. Paz, Ederlina G. Nocon

Abstract:

Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7.

Keywords: bounds of linear codes, Griesmer bound, construction of linear codes, optimal binary linear codes

Procedia PDF Downloads 755
4523 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
4522 Comparison of Aggression Amount among Athletic Students of Different Sports

Authors: Seyed Hossein Alavi, Farshad Ghazalian, Soghra Jamshidi

Abstract:

Nowadays, athletic aggression discussion is considered as an important issue in sports psychology and sports effects have been noted by researchers from a long time ago. In this research, the amount of aggression among athletic students of different sport courses will be surveyed and compared. Statistics society in this research consists of all of boy athletic students in wrestling, taekwondo, football, and basketball of Mahmoudabad City that are 200 persons and the limitation of their ages are between 12-15 years old. Among all athletic students of different sport courses, 40 persons were chosen randomly for the sample. The method of research is a descriptive-comparative type that has been done according to field study and for measurement of examinations aggression amount, we have used Ayzank exam. In analysis step of foundations, for comparison of aggression of examined group, we have used Varian’s analysis exam. Research results show that among aggression amounts of athletic students of wrestling, taekwondo, football and basketball, there is no fundamental difference (p < 0.05). Stimulation of guest team with the host team fans, referees performance, exhaustion, physical confrontations, team position in the tournament table, and so on. There is no significant difference among aggression amount of selected sport athletic students.

Keywords: aggression, athletic, student, sports

Procedia PDF Downloads 488
4521 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
4520 A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations

Authors: Yanto Santosa, Rozza Tri Kwatrina

Abstract:

High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies.

Keywords: wildlife diversity, oil palm plantation, high conservation value area, ecological factors

Procedia PDF Downloads 152
4519 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322