Search results for: fly ash based geopolymer
25083 Social Capital in Housing Reconstruction Post Disaster Case of Yogyakarta Post Earthquake
Authors: Ikaputra
Abstract:
This paper will focus on the concept of social capital for especially housing reconstruction Post Disaster. The context of the study is Indonesia and Yogyakarta Post Earthquake 2006 as a case, but it is expected that the concept can be adopted in general post disaster reconstruction. The discussion will begin by addressing issues on House Reconstruction Post Disaster in Indonesia and Yogyakarta; defining Social Capital as a concept for effective management capacity based on community; Social Capital Post Java Earthquake utilizing Gotong Royong—community mutual self-help, and Approach and Strategy towards Community-based Reconstruction.Keywords: community empowerment, Gotong Royong, post disaster, reconstruction, social capital, Yogyakarta-Indonesia
Procedia PDF Downloads 32525082 Development of Visual Element Design Guidelines for Consumer Products Based on User Characteristics
Authors: Taezoon Park, Wonil Hwang
Abstract:
This study aims to build a design guideline for the effective visual display used for consumer products considering user characteristics; gender and age. Although a number of basic experiments identified the limits of human visual perception, the findings remain fragmented and many times in an unfriendly form. This study compiled a design cases along with tables aggregated from the experimental result of visual perception; brightness/contrast, useful field of view, color sensitivity. Visual design elements commonly used for consumer product, were selected and appropriate guidelines were developed based on the experimental result. Since the provided data with case example suggests a feasible design space, it will save time for a product designer to find appropriate design alternatives.Keywords: design guideline, consumer product, visual design element, visual perception, emotional design
Procedia PDF Downloads 37225081 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks
Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof
Abstract:
An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature
Procedia PDF Downloads 17525080 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 12325079 Evidence-Based Practices in Education: A General Review of the Literature on Elementary Classroom Setting
Authors: Carolina S. Correia, Thalita V. Thomé, Andersen Boniolo, Dhayana I. Veiga
Abstract:
Evidence-based practices (EBP) in education is a set of principles and practices used to raise educational policy, it involves the integration of professional expertise in education with the best empirical evidence in making decisions about how to deliver instruction. The purpose of this presentation is to describe and characterize studies about EBP in education in elementary classroom setting. Data here presented is part of an ongoing systematic review research. Articles were searched and selected from four academic databases: ProQuest, Scielo, Science Direct and Capes. The search terms were evidence-based practices or program effectiveness, and education or teaching or teaching practices or teaching methods. Articles were included according to the following criteria: The studies were explicitly described as evidence-based or discussed the most effective practices in education, they discussed teaching practices in classroom context in elementary school level. Document excerpts were extracted and recorded in Excel, organized by reference, descriptors, abstract, purpose, setting, participants, type of teaching practice, study design and main results. The total amount of articles selected were 1.185, 569 articles from Proquest Research Library; 216 from CAPES; 251 from ScienceDirect and 149 from Scielo Library. The potentially relevant references were 178, from which duplicates were removed. The final number of articles analyzed was 140. From 140 articles, are 47 theoretical studies and 93 empirical articles. The following research design methods were identified: longitudinal intervention study, cluster-randomized trial, meta-analysis and pretest-posttest studies. From 140 articles, 103 studies were about regular school teaching and 37 were on special education teaching practices. In several studies, used as teaching method: active learning, content acquisition podcast (CAP), precision teaching (PT), mediated reading practice, speech therapist programs and peer-assisted learning strategies (PALS). The countries of origin of the studies were United States of America, United Kingdom, Panama, Sweden, Scotland, South Korea, Argentina, Chile, New Zealand and Brunei. The present study in is an ongoing project, so some representative findings will be discussed, providing further acknowledgment on the best teaching practices in elementary classroom setting.Keywords: best practices, children, evidence-based education, elementary school, teaching methods
Procedia PDF Downloads 33425078 Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles
Authors: Faramarz Ashenai Ghasemi, Ismail Ghasemi, Sajad Daneshpayeh
Abstract:
In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased.Keywords: PP/LLDPE/TiO2, nanocomposites, elastic modulus, tensile strength
Procedia PDF Downloads 52825077 Ghanaian Men and the Performance of Masculinity: Negotiating Gender-Based Violence in Contemporary Ghana
Authors: Isaac Dery
Abstract:
Masculinity studies have gained much purchase globally in recent decades, especially the sense in which they have produced discursive space for interdisciplinary investigations. In the light of this, there is increasing consensus among commentators that different masculinities co-exist within a particular social space. There is also a growing recognition and awareness of the merits in examining the conceptual underpinnings of masculinity (especially hegemonic masculinity) its variously contested meanings, and values, and how it contributes to violent behaviours by men. The consequences of hegemonic masculinity and its violent and traumatic impacts on men and women have been evident. The emerging call to imagine more egalitarian and complex masculinities among men has been at the centre of various discussions on the fight against violence. Some theorists argue that this violence emanates from men’s drive to live up to impossible ideals of “masculinity.” Seeking to make the connections between masculinity and gender-based violence, this paper discusses the imperative and possibilities of engaging men/boys as key actors in the campaign against violence. It is worth re-examining the ways in which men’s embodiment and performance of dangerous masculinities contribute towards violence. This paper therefore argues that empowering men to understand the implications of certain behaviours is the key in an attempt to arrest violence and its traumatic cost. This paper is situated within the thesis that there is a relationship between men’s embodiment and performance of dominant forms of masculinities, on the one hand, and violence against women and other men, on the other. Based on research conducted in northern Ghana on domestic violence, it is the argument of this paper that in order to contain violence against women, conditions of gender construction need to be problematized in a manner that will transform fundamental understandings of gender relations in society.Keywords: violence against women, masculinities, Ghana, gender
Procedia PDF Downloads 49925076 The Impact of Household Income on Students' Financial Literacy
Authors: Dorjana Nano
Abstract:
Financial literacy has become on focus of many research studies. Family household is found to influence students’ financial literacy. The purpose of this study is to explore whether financial literacy of Albanian students is associated with their family household. The main objectives of this research are: i) firstly, to evaluate how financial literate are Albanian university students; ii) secondly, to examine whether the financial literacy differs based on the level of students family income; and iii) finally, to draw some conclusions and recommendations in order to improve student’s financial literacy. An instrument, comprised of personal finance and personal characteristics is administered to 637 students in Albania. The constituency of the survey is tested based on the dimension reduction and factor analyzing techniques. The One Way Welch ANOVA and multiple comparison techniques are utilized to analyze the data. The results indicate that student’s financial literacy is influenced by their family income.Keywords: financial literacy, household income, smart decisions, university students
Procedia PDF Downloads 27225075 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 19825074 An Analysis of Anxious/Depressed Behaviors of Chinese Adolescents
Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgiana Duarte
Abstract:
This study explored early adolescents’ anxious and depressed syndromes in Northeast China. Specifically, the study examined anxious and depressed behaviors and the relationship to education environments. The purpose is to examine how the elements of educational environments and the early adolescents’ behaviors as independent variables influence and possibly predict the early adolescents’ anxious/depressed problems. Achenbach System of Empirically Based Assessment (ASEBA), was the instrument, used in collection of data. A stratified sampling method was utilized to collect data from 2532 participants in seven schools. The results indicated that several background variables influenced anxious/depressed problem. Specifically, age, grade, sports activities and hobbies had a relationship with the anxious/depressed variable.Keywords: anxious/depressed problems, CBCL, empirically-based assessment, internalizing problems
Procedia PDF Downloads 32425073 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 29225072 Numerical Investigation of Slot Die Coating Based on VOF Method
Authors: Zhidi Lei, Xixi Cai, Jue Ding, Peifen Weng, Xiaowei Li
Abstract:
In the process of preparing thin films by chemical solution method, the uniformity of gel coating has a great influence on the subsequent film thickness. Based on a coating device, the research tracks the interface development of gas-liquid flow by volume of fluid method (VOF). The effects of fluid viscosity and wall wetting property for the shape and position of the coating window are discussed in the process of slot die coating. The result shows that downstream contact lines gets closer to the corner with the increase of fluid viscosity. When the viscosity increases from 0.2Pa∙s to 0.3Pa∙s, 18.2% of the vortex region area will be reduced. With the static contact angle of upper die head surface (θ_sd) increasing, X_u decreased gradually which cause the instability changes of upstream surface. Also, θ_sd increasing brings the reduction of vortex region.Keywords: film growth, vortex, VOF, slot die coating
Procedia PDF Downloads 37325071 High Thermal Selective Detection of NOₓ Using High Electron Mobility Transistor Based on Gallium Nitride
Authors: Hassane Ouazzani Chahdi, Omar Helli, Bourzgui Nour Eddine, Hassan Maher, Ali Soltani
Abstract:
The real-time knowledge of the NO, NO₂ concentration at high temperature, would allow manufacturers of automobiles to meet the upcoming stringent EURO7 anti-pollution measures for diesel engines. Knowledge of the concentration of each of these species will also enable engines to run leaner (i.e., more fuel efficient) while still meeting the anti-pollution requirements. Our proposed technology is promising in the field of automotive sensors. It consists of nanostructured semiconductors based on gallium nitride and zirconia dioxide. The development of new technologies for selective detection of NO and NO₂ gas species would be a critical enabler of superior depollution. The current response was well correlated to the NO concentration in the range of 0–2000 ppm, 0-2500 ppm NO₂, and 0-300 ppm NH₃ at a temperature of 600.Keywords: NOₓ sensors, HEMT transistor, anti-pollution, gallium nitride, gas sensor
Procedia PDF Downloads 24525070 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 27225069 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 11125068 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 14525067 Insults, Injuries, and Resistance: Challenging Environmental Classism and Embracing Working-Class Environmentalism
Authors: Karen Bell
Abstract:
It is vital to integrate a working-class perspective into the just transition to an inclusive and sustainable society because of the particular expertise and interests that working-class people bring to the debates and actions. In class societies, those who are not well represented in the current structures of power can find it easier to see when the system is not working. They are also more likely to be impacted by the environmental crises because wealthier people can change their dwelling places, jobs and other aspects of their lives in the face of risks. Therefore, challenging the ‘post-material values thesis’, this paper argues that, if enabled to do so, working-class people are more likely to identify what needs to be addressed and changed in transition and can be more motivated to make the changes necessary than other social groups. However, they are often excluded from environmental decision-making and environmental social movements. The paper is based on a mixed methodology; drawing on secondary data, interview material, participant observation and documentary analysis. It is based on years of research and activism on environmental issues in working-class communities. The analysis and conclusion discusses the seven kinds of change required to address this problem: 1) organizational change - participatory practice (2) legislative change - make class an equalities and human rights issue (3) policy change - reduce inequality (4) social movement change - radicalize the environmental movement and support the environmental working-class (5) political change - create an eco-social state based on sharing (6) cultural change - integrate social and environmental justice, and (7) revolutionary change - dismantle capitalism.Keywords: environmentalism, just transition, sustainability, working class
Procedia PDF Downloads 15225066 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 29625065 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 8025064 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 31125063 A Study on Vitalization Factors of Itaewon Commercial Street-Focused on Itaewon-Ro
Authors: Park, Yoon Hong, Wang, Jung Kab, Choi Seong-Won, Kim, Hong Kyu
Abstract:
Itaewon-Ro is a special place where the Seoul Metropolitan city designated as the fist are of tourism, specially with the commercial supremacy that foreigners may like. It is the place that grew with regional specialty. Study on the vitalization factors of commercialist were analyzed on consumer shop choice factor, Physical environment based on commercial supremacy vitalization, Functional side of the road and regional specialty. However, since Itaewon seemed to take great place in the cultural factor, Because of its regional specialty, Research was processed. This study is the analysis on the vitalization of Itaewon commercialist that looked for important factors with AHP analysis on consumers use as commercialist. Based on the field study and preceded study, top three factors were distinguished with physical factor, cultural factor, landscape factor, and thirteen detail contents were found. This study focused on the choice of the consumer and with a consumer-based questionnaire, we analyzed the importance of vitalization factors. Results of the research are shown in the following paragraphs. In the Itaewon commercial market, mostly women in the 20~30s were the main consumers for meeting and hopping. Vitalization category that the consumer thinks it most importantly was 'attraction', 'various businesses', and 'convenience of transportation'. 'Attraction that cannot be seen in other places', Which was chosen as the most important factor was judged that Itaewon holds cultural identity that is shown in the process of development, Instead of showing artificial and physical composition.Keywords: commercialist, vitalization factor, regional specialty, cultural factor, AHP analysis
Procedia PDF Downloads 42225062 The Effectiveness of a School-Based Addiction Prevention Program: Pilot Evaluation of Rajasthan Addiction Prevention Project
Authors: Sadhana Sharma, Neha Sharma, Hardik Khandelwal, Arti Sharma
Abstract:
Background: It is widely acknowledged globally that parents must advocate for their children's drug and substance abuse prevention. However, many parents find it difficult to advocate due to systemic and logistical barriers. Alternatives to introducing advocacy, awareness, and support for the prevention of drug and substance abuse to children could occur in schools. However, little research has been conducted on the development of advocates for substance abuse in school settings. Objective: to evaluate the effectiveness of a school-based addiction prevention and control created as part of the Rajasthan Addiction Prevention Project (a partnership between state-community initiative). Methods: We conducted an evaluation in this study to determine the impact of a RAPP on a primary outcome (substance abuse knowledge) and other outcomes (family–school partnership, empowerment, and support). Specifically, between September-December 2022, two schools participated in the intervention group (advocacy training), and two schools participated in the control group (waiting list). The RAPP designed specialised 2-hrs training to equip teachers-parents with the knowledge and skills necessary to advocate for their own children and those of other families. All participants were required to complete a pre- and post-survey. Results: The intervention group established school advocates in schools where trained parents volunteered to lead support groups for high-risk children. Compared to the participants in the wait list control group, those in the intervention group demonstrated greater education knowledge, P = 0.002, and self-mastery, P = 0.04, and decreased family–school partnership quality, P = 0.002.Conclusions: The experimental evaluation of school-based advocacy programme revealed positive effects on substance abuse that persist over time. The approach wa s deemed feasible and acceptable by both parents and the school.Keywords: prevention, school based, addiction, advocacy
Procedia PDF Downloads 9625061 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic
Procedia PDF Downloads 29425060 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 7625059 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 32925058 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil
Authors: Kirstin Burger, Paul Watts, Nicole Vorster
Abstract:
Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis
Procedia PDF Downloads 18625057 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments
Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie
Abstract:
Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.Keywords: antibody engineering, biosensor, phage display, unnatural amino acids
Procedia PDF Downloads 14625056 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 8925055 Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile
Authors: Zulfikar Dinar Wahidayat Putra
Abstract:
Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city.Keywords: arid area, sustainable water system, urban harvest approach, self-sufficiency
Procedia PDF Downloads 26525054 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 24