Search results for: small wind turbine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6123

Search results for: small wind turbine

3003 Asymptotic Confidence Intervals for the Difference of Coefficients of Variation in Gamma Distributions

Authors: Patarawan Sangnawakij, Sa-Aat Niwitpong

Abstract:

In this paper, we proposed two new confidence intervals for the difference of coefficients of variation, CIw and CIs, in two independent gamma distributions. These proposed confidence intervals using the close form method of variance estimation which was presented by Donner and Zou (2010) based on concept of Wald and Score confidence interval, respectively. Monte Carlo simulation study is used to evaluate the performance, coverage probability and expected length, of these confidence intervals. The results indicate that values of coverage probabilities of the new confidence interval based on Wald and Score are satisfied the nominal coverage and close to nominal level 0.95 in various situations, particularly, the former proposed confidence interval is better when sample sizes are small. Moreover, the expected lengths of the proposed confidence intervals are nearly difference when sample sizes are moderate to large. Therefore, in this study, the confidence interval for the difference of coefficients of variation which based on Wald is preferable than the other one confidence interval.

Keywords: confidence interval, score’s interval, wald’s interval, coefficient of variation, gamma distribution, simulation study

Procedia PDF Downloads 426
3002 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 199
3001 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at  ±0.9 V.

Keywords: floating active resistor, complementary common gate, complementary regulated cascode, current mirror

Procedia PDF Downloads 259
3000 Relationship between Entrepreneurial Orientation and Small and Medium Enterprises Growth in Bauchi Metropolis, Nigeria

Authors: Muhammed Auwal Umar, M. Saleh

Abstract:

The main purpose of this research is to examine the relationship between entrepreneurial orientation (innovativeness, risk-taking propensity, and proactiveness) and SME's growth in Bauchi metropolis. The study is quantitative in nature using a cross-sectional survey. The population of the study was 364 SMEs. Using simple random sampling, 183 questionnaires were personally distributed, out of which 165 (90%) were found valid for the analysis. Kregcie and Morgan (1970) table was used to determine the sample size. Pearson correlation was used to test the hypotheses. The analysis was conducted with the aid of IBM Statistical Package for Social Sciences (SPSS) version 20. The results established that innovativeness, risk-taking propensity, and proactiveness have significant positive relationship with SME's growth. It is therefore recommended that SMEs’ owners/managers should change their attitude by changing their product and mode of operation in line with customer demand, being proactive ahead of other competitors in trying a better way of doing things, and taking calculated risks in anticipation of high return in order for their businesses to survive and grow.

Keywords: SMEs growth, innovativeness, risk-taking propensity, proactiveness

Procedia PDF Downloads 117
2999 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 116
2998 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša

Abstract:

Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 234
2997 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 162
2996 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions

Authors: Tran Le Luu, Jeyong Yoon

Abstract:

RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.

Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution

Procedia PDF Downloads 252
2995 Electrical and Magnetoelectric Properties of (y)Li0.5Ni0.7Zn0.05Fe2O4 + (1-y)Ba0.5Sr0.5TiO3 Magnetoelectric Composites

Authors: S. U. Durgadsimi, S. Chouguleb, S. Belladc

Abstract:

(y) Li0.5Ni0.7Zn0.05Fe2O4 + (1-y) Ba0.5Sr0.5TiO3 magnetoelectric composites with y = 0.1, 0.3 and 0.5 were prepared by a conventional standard double sintering ceramic technique. X-ray diffraction analysis confirmed the phase formation of ferrite, ferroelectric and their composites. logρdc Vs 1/T graphs reveal that the dc resistivity decreases with increasing temperature exhibiting semiconductor behavior. The plots of logσac Vs logω2 are almost linear indicating that the conductivity increases with increase in frequency i.e, conductivity in the composites is due to small polaron hopping. Dielectric constant (έ) and dielectric loss (tan δ) were studied as a function of frequency in the range 100Hz–1MHz which reveals the normal dielectric behavior except the composite with y=0.1 and as a function of temperature at four fixed frequencies (i.e. 100Hz, 1KHz, 10KHz, 100KHz). ME voltage coefficient decreases with increase in ferrite content and was observed to be maximum of about 7.495 mV/cmOe for (0.1) Li0.5Ni0.7Zn0.05Fe2O4 + (0.9) Ba0.5Sr0.5TiO3 composite.

Keywords: XRD, dielectric constant, dielectric loss, DC and AC conductivity, ME voltage coefficient

Procedia PDF Downloads 343
2994 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey

Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar

Abstract:

5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.

Keywords: 5G, 5th generation, innovation, standard, wireless communication

Procedia PDF Downloads 444
2993 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova

Abstract:

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Keywords: bioregions, ecological monitoring, phytoplankton, remote sensing

Procedia PDF Downloads 263
2992 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 143
2991 Characterization of Molecular Targets to Mediate Skin Itch and Inflammation

Authors: Anita Jäger, Andrew Salazar, Jörg von Hagen, Harald Kolmar

Abstract:

In the treatment of individuals with sensitive and psoriatic skin, several inflammation and itch-related molecular and cellular targets have been identified, but many of these have yet to be characterized. In this study, we present two potential targets in the skin that can be linked to the inflammation and itch cycle. 11ßHSD1 is the enzyme responsible for converting inactive cortisone to active cortisol used to transmit signals downstream. The activation of the receptor NK1R correlates with promoting inflammation and the perception of itch and pain in the skin. In this study, both targets have been investigated based on their involvement in inflammation. The role of both identified targets was characterized based on the secretion of inflammation cytokine- IL6, IL-8, and CCL2, as well as phosphorylation and signaling pathways. It was found that treating skin cells with molecules able to inhibit inflammatory pathways results in the reduction of inflammatory signaling molecules secreted by skin cells and increases their proliferative capacity. Therefore, these molecular targets and their associated pathways show therapeutic potential and can be mitigated via small molecules. This research can be used for further studies in inflammation and itch pathways and can help to treat pathological symptoms.

Keywords: inflammation, itch, signaling pathway, skin

Procedia PDF Downloads 122
2990 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application

Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra

Abstract:

Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.

Keywords: mobile app, doctor induction, medical education, acute medicine

Procedia PDF Downloads 85
2989 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 87
2988 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 211
2987 Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor

Authors: Jeonghun Nam, Seonggil Kim, Hyunjoo Choi, Chae Seung Lim

Abstract:

Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold.

Keywords: cell concentration, high-throughput, non-powered, viscoelastic fluid

Procedia PDF Downloads 285
2986 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 366
2985 Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties

Authors: Klara Masnicova, Jiri Chaloupek

Abstract:

Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers.

Keywords: bulk density, cone calorimetry, flammability, nonwoven textiles

Procedia PDF Downloads 307
2984 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 222
2983 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza

Abstract:

The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 425
2982 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens

Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu

Abstract:

A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.

Keywords: ball lens, quadrant detector, axial error, radial error

Procedia PDF Downloads 471
2981 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 97
2980 Solar Pond: Some Issues in Their Management and Mathematical Description

Authors: A. A. Abdullah, K. A. Lindsay

Abstract:

The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond.

Keywords: aqueous sodium chloride, constitutive expression, solar pond, salt-gradient

Procedia PDF Downloads 324
2979 Solar Photovoltaic Foundation Design

Authors: Daniel John Avutia

Abstract:

Solar Photovoltaic (PV) development is reliant on the sunlight hours available in a particular region to generate electricity. A potential area is assessed through its inherent solar radiation intensity measured in watts per square meter. Solar energy development involves the feasibility, design, construction, operation and maintenance of the relevant infrastructure, but this paper will focus on the design and construction aspects. Africa and Australasia have the longest sunlight hours per day and the highest solar radiation per square meter, 7 sunlight hours/day and 5 kWh/day respectively. Solar PV support configurations consist of fixed-tilt support and tracker system structures, the differentiation being that the latter was introduced to improve the power generation efficiency of the former due to the sun tracking movement capabilities. The installation of Solar PV foundations involves rammed piles, drilling/grout piles and shallow raft reinforced concrete structures. This paper presents a case study of 2 solar PV projects in Africa and Australia, discussing the foundation design consideration and associated construction cost implications of the selected foundations systems. Solar PV foundations represent up to one fifth of the civil works costs in a project. Therefore, the selection of the most structurally sound and feasible foundation for the prevailing ground conditions is critical towards solar PV development. The design wind speed measured by anemometers govern the pile embedment depth for rammed and drill/grout foundation systems. The lateral pile deflection and vertical pull out resistance of piles increase proportionally with the embedment depth for uniform pile geometry and geology. The pile driving rate may also be used to anticipate the lateral resistance and skin friction restraining the pile. Rammed pile foundations are the most structurally suitable due to the pile skin friction and ease of installation in various geological conditions. The competitiveness of solar PV projects within the renewable energy mix is governed by lowering capital expenditure, improving power generation efficiency and power storage technological advances. The power generation reliability and efficiency are areas for further research within the renewable energy niche.

Keywords: design, foundations, piles, solar

Procedia PDF Downloads 189
2978 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 159
2977 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications

Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.

Abstract:

In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.

Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna

Procedia PDF Downloads 110
2976 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 160
2975 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms

Authors: Samantha Rix

Abstract:

The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.

Keywords: cognitive processing, language learners, language proficiency, learning strategies

Procedia PDF Downloads 473
2974 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology

Authors: Mantas Sakalas, Paulius Sakalas

Abstract:

This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.

Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching

Procedia PDF Downloads 214