Search results for: slice thickness accuracy
2147 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 3442146 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 2972145 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift
Procedia PDF Downloads 2072144 Shock and Particle Velocity Determination from Microwave Interrogation
Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert
Abstract:
Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation
Procedia PDF Downloads 2172143 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 2542142 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data
Authors: Fanqiang Kong, Chending Bian
Abstract:
Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means
Procedia PDF Downloads 2532141 Mental Health Literacy in Ghana: Consequences of Religiosity, Education, and Stigmatization
Authors: Peter Adu
Abstract:
Although research on the concept of Mental Health Literacy (MHL) is growing internationally, to the authors’ best of knowledge, the beliefs and knowledge of Ghanaians on specific mental disorders have not yet been explored. This vignette study was conducted to explore the relationships between religiosity, education, stigmatization, and MHL among Ghanaians using a sample of laypeople (N = 409). The adapted questionnaire presented two vignettes (depression and schizophrenia) about a hypothetical person. The results revealed that more participants were able to recognize depression (47.4%) than schizophrenia (15.9%). Religiosity was not significantly associated with recognition of mental disorders (MHL) but was positively related with both social and personal stigma for depression and negatively associated with personal and perceived stigma for schizophrenia. Moreover, education was found to relate positively with MHL and negatively with perceived stigma. Finally, perceived stigma was positively associated with MHL, whereas personal stigma for schizophrenia related negatively to MHL. In conclusion, education but not religiosity predicted identification accuracy, but both predictors were associated with various forms of stigma. Findings from this study have implications for MHL and anti-stigma campaigns in Ghana and other developing countries in the region.Keywords: depression, education, mental health literacy, religiosity, schizophrenia
Procedia PDF Downloads 1622140 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1232139 Exploring Relationship between Attention and Consciousness
Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh
Abstract:
The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.Keywords: attention, awareness, dual task paradigm, natural and geometric images
Procedia PDF Downloads 5222138 Spatial Integrity of Seismic Data for Oil and Gas Exploration
Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof
Abstract:
Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow
Procedia PDF Downloads 2312137 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5552136 Gender Features of Left Ventricular Myocardial Remodeling and the Development of Chronic Heart Failure in Patients with Postinfarction Cardiosclerosis
Authors: G. Dadashova, A. Bakhshaliyev
Abstract:
Aim: Determine gender differences in the etiology and clinical outcomes, as well as in the remodeling of the left ventricle (LV) in patients with chronic heart failure (CHF), suffering from arterial hypertension (AH) and coronary heart disease (CHD). Material and methods: The study included 112 patients of both sexes; aged 45 to 60 years with postinfarction cardiosclerosis had functional class (FC) heart failure II-IV of NYHA which were examined on the basis of Azerbaijan Scientific Research Institute of Cardiology. The patients were divided into 2 groups: 1st c. 60 males, mean age 54,8 ± 3,3 years, and 2nd gr 52 women, mean age 55,8 ± 3,1 years. To assess cardiac hemodynamic all patients underwent echocardiography (B-M-modes) using ‘Vivid 3’. Thus on the basis of indicators such as the index of the relative thickness of the left ventricle wall and the index of left ventricular mass (LVMI) was identified the architectonic model of the left ventricle. Results: According to our research leading cause of heart failure in women is 50.5% of cases of hypertension, ischemic heart disease 23.7% (with 79.5% of the cases developed in patients with chronic heart failure who did not have a history of myocardial infarction). While in men is the undisputed leader of CHD, forming 78.3% of CHF (80.3% in men with CHF occurred after myocardial infarction). According to our research in women more often than men CHF develops a type of diastolic dysfunction (DD, and left ventricular ejection fraction remained unchanged. Since DD occurs in men at 65,8% vs. 76,4% of women when p < 0,05. In the group of women was more common prognostic neblagopryatnye remodeling - eccentric hypertrophy of the left ventricle: 68% vs. 54.5% among men (p < 0,05), concentric left ventricular hypertrophy: 21% in women vs 19,1% (p > 0,05 ). Conclusions: Patients with heart failure are a number of gender-specific: the prevalence of hypertension in women, and coronary heart disease in men. While in women with heart failure often recorded diastolic dysfunction and characterized by the development of prognostically unfavorable remodeling types: eccentric and concentric LV hypertrophy.Keywords: chronic heart failure, arterial hypertension, remodeling, diastolic dysfunction, men, women, ischemic heart disease
Procedia PDF Downloads 3532135 Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer arietinum L.) Cultivars in Autumn Sowing
Authors: Khosro Mohammadi
Abstract:
The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium Sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.Keywords: cultivar, genotype, nitrogen, nutrient, yield
Procedia PDF Downloads 3552134 An Exploratory Study for the Discrimination of Two Types of Pain Based on Chebyshev’s Coefficients of EEG Signal
Authors: C. M. Segning, H. Ezzaidi, S. Nogomo, M. Otis
Abstract:
Our proposal aims for developing an objective pain discrimination system, i.e., to discriminate between two neuronal conditions affecting the same neurophysiological signal. In this study, we present an approach to identify, in the first instance, two types of pain based on the analysis of the EEG signal decomposition coefficients. Each EEG segment of one second duration is analyzed using the Chebyshev and linear prediction transform to extract a set of non-linear features, namely the Chebyshev and linear prediction coefficients. These features are used as the input vector of the Gaussian mixture model (GMM) for classification to differentiate two types of pain. To evaluate the performance of the proposed approach, we used an EEG dataset recorded in the left temporal (T7) and left fronto-central (FC5) regions. The experimental results demonstrate the effectiveness of Chebyshev coefficients for accurate differentiation of chronic fibromyalgia-like pain and experimental pain in the resting gamma band, with an accuracy of 93.9%. These results suggest a potential for discrimination of clinical pain according to its mechanism.Keywords: chronic fibromyalgia pain, Chebyshev coefficients, healthy with induced pain, electroencephalogram, Gaussian mixture model
Procedia PDF Downloads 72133 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 4712132 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 2772131 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers
Procedia PDF Downloads 1822130 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 1582129 A Simple Approach for the Analysis of First Vibration Mode of Layered Soil Profiles
Authors: Haizhong Zhang, Yan-Gang Zhao
Abstract:
Fundamental period, mode shape, and participation factor are important basic information for the understanding of earthquake response of ground. In this study, a simple approach is presented to calculate these basic information of layered soil profiles. To develop this method, closed form equations are derived for analysis of free vibration of layered soil profiles firstly, based on equilibrium between inertia and elastic forces. Then, by further associating with the Madera procedure developed for estimation of fundamental period, a simple method that can directly determine the fundamental period, mode shape and participation factor is proposed. The proposed approach can be conveniently implemented in simple spreadsheets and easily used by practicing engineers. In addition, the accuracy of the proposed approach is investigated by analyzing first vibration mode of 67 representative layered soil profiles, it is found that results by the proposed method agree very well with accurate results.Keywords: layered soil profile, natural vibration, fundamental period, fundamental mode shape
Procedia PDF Downloads 3322128 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen
Abstract:
For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error
Procedia PDF Downloads 5862127 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 4082126 Fetal Ilium as a Tool for Sex Determination: Discriminant Functional Analysis
Authors: Luv Sharma
Abstract:
Sex determination has been the most intriguing puzzle for forensic pathologists and anthropologists, for which efforts have been made for a long. Sexual dimorphism is well established in the adult pelvis, and it is known to provide the highest level of information about sexual dimorphism. This study was conducted to know whether this dimorphism exists in fetal bones or not. A total of 34 pairs of fetal pelvis bones (22 males and 12 Females), ages ranging from 4 months to full term, were collected from unidentified dead fetuses brought to the Department of Forensic Medicine for routine medicolegal autopsies to study for sexual dimorphism in the Department of Anatomy, Pt. BD Sharma PGIMS, Rohtak. Samples were divided into 2 age groups, and various metric parameters were recorded with the help of a digital vernier caliper. Data obtained was subjected to descriptive and discriminant functional analysis. Results of Descriptive and Discriminant Functional Analysis showed that sex determination can be done with 100% accuracy by using different combinations of parameters of fetal ilium. This study illustrates that sexual dimorphism exists from early fetal life after mid-pregnancy; it can be clearly established by discriminant functional analysis.Keywords: Ilium, fetus, sex determination, morphometric
Procedia PDF Downloads 642125 Numerical Method of Heat Transfer in Fin Profiles
Authors: Beghdadi Lotfi, Belkacem Abdellah
Abstract:
In this work, a numerical method is proposed in order to solve the thermal performance problems of heat transfer of fins surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry
Procedia PDF Downloads 4082124 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining
Procedia PDF Downloads 4412123 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens
Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu
Abstract:
A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.Keywords: ball lens, quadrant detector, axial error, radial error
Procedia PDF Downloads 4792122 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 1232121 Auditing of Building Information Modeling Application in Decoration Engineering Projects in China
Authors: Lan Luo
Abstract:
In China’s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants.Keywords: audit, evaluation, dimensions, methods, standards, BIM application in decoration engineering projects
Procedia PDF Downloads 3452120 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran
Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi
Abstract:
Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.Keywords: watershed simulation, WetSpa, runoff, flood prediction
Procedia PDF Downloads 3452119 Velocity Logs Error Reduction for In-Service Calibration of Vessel Performance Indicators
Authors: Maria Tsompanoglou, Dimitris Armenis
Abstract:
Vessel behavior in different operational and weather conditions constitutes the main area of interest for the ship operator. Ship speed and fuel consumption are the most decisive parameters in this respect, as their correlation provides information about the economic and environmental efficiency of the vessel, becoming the basis of decision making in terms of maintenance and trading. In the analysis of vessel operational profile for the evaluation of fuel consumption and the equivalent CO2 emissions footprint, the indications of Speed Through Water are widely used. The seasonal and regional variations in seawater characteristics, which are available nowadays, can provide the basis for accurate estimation of the errors in Speed Through Water indications at any time. Accuracy in the speed value on a route basis can enable operator identify the ship fuel and propulsion efficiency and proceed with improvements. This paper discusses case studies, where the actual vessel speed was corrected by a post-processing algorithm. The effects of the vessel correction to standard Key Performance Indicators, as well as operational findings not identified earlier, are also discussed.Keywords: data analytics, MATLAB, vessel performance monitoring, speed through water
Procedia PDF Downloads 3042118 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices
Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev
Abstract:
In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.Keywords: nanostructures, GaAs, plasma chemical etching, modification structures
Procedia PDF Downloads 148