Search results for: healthcare data security
24701 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: independent topic analysis, topic extraction, topic naming, web search engine
Procedia PDF Downloads 12424700 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 14224699 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis
Authors: Saleem Z. Ramadan
Abstract:
In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life
Procedia PDF Downloads 56424698 RV Car Clinic as Cost-Effective Health Care
Authors: Dessy Arumsari, Ais Assana Athqiya, Mulyaminingrum
Abstract:
Healthcare in remote areas is one of the major concerns in Indonesia. Building hospitals in a nation of 18.000 islands with a larger-than-life bureaucracy and problems with corruption, a critical shortage of qualified medical professionals and well-heeled patients resigned to traveling abroad for health care is a hard feat to accomplish. To assuring that all populations have access to appropriate and cost-effective care, a new solution to tackle this problem is with the presence of RV Car Clinic. This car has a concept such as a walking hospital that provides health facilities inside it. All of the health professionals who work in RV Car Clinic will do the rotation for a year in order to the equitable distribution of health workers. We need to advocate the policy makers to help realize RV Car Clinic in remote areas. Health services can be disseminated by the present of RV Car Clinic. Summarily, the local communities can get cost effectively because RV Car Clinic will come to their place and serve the health services.Keywords: health policy, health professional, remote areas, RV Car Clinic
Procedia PDF Downloads 29724697 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 45224696 Maternal Obesity in Nigeria: An Exploratory Study
Authors: Ojochenemi J. Onubi, Debbi Marais, Lorna Aucott, Friday Okonofua, Amudha Poobalan
Abstract:
Background: Obesity is a worldwide epidemic with major health and economic consequences. Pregnancy is a trigger point for the development of obesity, and maternal obesity is associated with significant adverse effects in the mother and child. Nigeria is experiencing a double burden of under- and over-nutrition with rising levels of obesity particularly in women. However, there is scarcity of data on maternal obesity in Nigeria and other African countries. Aims and Objectives: This project aimed at identifying crucial components of potential interventions for maternal obesity in Nigeria. The objectives were to assess the prevalence, effects, and distribution of maternal obesity; knowledge, attitude and practice (KAP) of pregnant women and maternal healthcare providers; and identify existing interventions for maternal obesity in Nigeria. Methodology: A systematic review and meta-analysis were initially conducted to appraise the existing literature on maternal obesity in Africa. Following this, a quantitative questionnaire survey of the KAP of pregnant women and a qualitative interview study of the KAP of Health Care Workers (HCW) were conducted in seven secondary and tertiary hospitals across Nigeria. Quantitative data was analysed using SPSS statistical software, while thematic analysis was conducted for qualitative data. Results: Twenty-nine studies included in the systematic review showed significant prevalence, socio-demographic associations, and adverse effects of maternal obesity on labour, maternal, and child outcomes in Africa. The questionnaire survey of 435 mothers revealed a maternal obesity prevalence of 17.9% among mothers who registered for antenatal care in the first trimester. The mothers received nutrition information from different sources and had insufficient knowledge of their own weight category or recommended Gestational Weight Gain (GWG), causes, complications, and safe ways to manage maternal obesity. However, majority of the mothers were of the opinion that excess GWG is avoided in pregnancy and some practiced weight management (diet and exercise) during pregnancy. For the qualitative study, four main themes were identified: ‘Concerns about obesity in pregnancy’, ‘Barriers to care for obese pregnant women’, ‘Practice of care for obese pregnant women’, and ‘Improving care for obese pregnant women’. HCW expressed concerns about rising levels of maternal obesity, lack of guidelines for the management of obese pregnant women and worries about unintended consequences of antenatal interventions. ‘Barriers’ included lack of contact with obese women before pregnancy, late registration for antenatal care, and perceived maternal barriers such as socio-cultural beliefs of mothers and poverty. ‘Practice’ included anticipatory care and screening for possible complications, general nutrition education during antenatal care and interdisciplinary care for mothers with complications. HCW offered suggestions on improving care for obese women including timing, type, and settings of interventions; and the need for involvement of other stake holders in caring for obese pregnant women. Conclusions: Culturally adaptable/sensitive interventions should be developed for the management of obese pregnant women in Africa. Education and training of mothers and health care workers, and provision of guidelines are some of the components of potential interventions in Nigeria.Keywords: Africa, maternal, obesity, pregnancy
Procedia PDF Downloads 27124695 Geospatial Data Complexity in Electronic Airport Layout Plan
Authors: Shyam Parhi
Abstract:
Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted.Keywords: geospatial data, geology, geographic information systems, aviation
Procedia PDF Downloads 42124694 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 21124693 Effect of Inflorescence Removal and Earthing-Up Times on Growth and Yield of Potato (Solanum tuberosum L.) at Jimma Southwestern Ethiopia
Authors: Dessie Fisseha, Derbew Belew, Ambecha Olika
Abstract:
Potato is a high-potential food security crop in Ethiopia. However, the yield and productivity of the crop have been far below the world average. This is due to several factors, including appropriate agronomic practices, such as time of earthing-up and inflorescence management. A field experiment was conducted at Jimma, Southwest Ethiopia, during 2016/17 under irrigation to determine the effect of time of earthing-up and inflorescence removal on the growth, yield, and quality of potatoes. The treatments consisted of a time of earthing-up (no earthing-up, earthing-up at 15, 30, and 45 days after complete plant emergence) and inflorescence removal (inflorescence removed and not removed). Potato variety (Belete) was used for this experiment. A 2x4 factorial experiment was laid out with three replications. Data collected on the growth, yield, and quality components of potatoes were analyzed using SAS Version 9.3 statistical software. Inflorescence removal affected the majority of the growth and yield parameters, while the time of earthing-up affected all growth, yield, and quality (green tuber number) parameters. Earthing-up at 15 days in combination with inflorescence removal (at 60 days after complete plant emergence) gave better plant growth and maximum tuber yield of the Belete potato variety under irrigated conditions. Since the current research was conducted at one location, in one season, and with one potato cultivar (Belete), it would be advisable to repeat the experiment so as to arrive at a final conclusion and subsequent recommendation.Keywords: Belete, earthing-up, inflorescence, yield
Procedia PDF Downloads 8024692 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 46324691 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 20424690 A Concept Study to Assist Non-Profit Organizations to Better Target Developing Countries
Authors: Malek Makki
Abstract:
The main purpose of this research study is to assist non-profit organizations (NPOs) to better segment a group of least developing countries and to optimally target the most needier areas, so that the provided aids make positive and lasting differences. We applied international marketing and strategy approaches to segment a sub-group of candidates among a group of 151 countries identified by the UN-G77 list, and furthermore, we point out the areas of priorities. We use reliable and well known criteria on the basis of economics, geography, demography and behavioral. These criteria can be objectively estimated and updated so that a follow-up can be performed to measure the outcomes of any program. We selected 12 socio-economic criteria that complement each other: GDP per capita, GDP growth, industry value added, export per capita, fragile state index, corruption perceived index, environment protection index, ease of doing business index, global competitiveness index, Internet use, public spending on education, and employment rate. A weight was attributed to each variable to highlight the relative importance of each criterion within the country. Care was taken to collect the most recent available data from trusted well-known international organizations (IMF, WB, WEF, and WTO). Construct of equivalence was carried out to compare the same variables across countries. The combination of all these weighted estimated criteria provides us with a global index that represents the level of development per country. An absolute index that combines wars and risks was introduced to exclude or include a country on the basis of conflicts and a collapsing state. The final step applied to the included countries consists of a benchmarking method to select the segment of countries and the percentile of each criterion. The results of this study allowed us to exclude 16 countries for risks and security. We also excluded four countries because they lack reliable and complete data. The other countries were classified per percentile thru their global index, and we identified the needier and the areas where aids are highly required to help any NPO to prioritize the area of implementation. This new concept is based on defined, actionable, accessible and accurate variables by which NPO can implement their program and it can be extended to profit companies to perform their corporate social responsibility acts.Keywords: developing countries, international marketing, non-profit organization, segmentation
Procedia PDF Downloads 30824689 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 17424688 Outputs from the Implementation of 'PHILOS' Programme: Emergency Health Response to Refugee Crisis, Greece, 2017
Authors: K. Mellou, G. Anastopoulos, T. Zakinthinos, C. Botsi, A. Terzidis
Abstract:
‘PHILOS – Emergency health response to refugee crisis’ is a programme of the Greek Ministry of Health, implemented by the Hellenic Center for Disease Control and Prevention (HCDCP). The programme is funded by the Asylum, Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs. With the EU Member States accepting, the last period, accelerating migration flows, Greece inevitably occupies a prominent position in the migratory map due to this geographical location. The main objectives of the programme are a) reinforcement of the capacity of the public health system and enhancement of the epidemiological surveillance in order to cover refugees/migrant population, b) provision of on-site primary health care and psychological support services, and c) strengthening of national health care system task-force. The basic methods for achieving the aforementioned goals are: a) implementation of syndromic surveillance system at camps and enhancement of public health response with the use of mobile medical units (Sub-action A), b) enhancement of health care services inside the camps via increasing human resources and implementing standard operating procedures (Sub-action B), and c) reinforcement of the national health care system (primary healthcare units, hospitals, and emergency care spots) of affected regions with personnel (Sub-action C). As a result, 58 health professionals were recruited under sub-action 2 and 10 mobile unit teams (one or two at each health region) were formed. The main actions taken so far by the mobile units are the evaluation, of syndromic surveillance, of living conditions at camps and medical services. Also, vaccination coverage of children population was assessed, and more than 600 catch-up vaccinations were performed by the end of June 2017. Mobile units supported transportation of refugees/migrants from camps to medical services reducing the load of the National Center for Emergency Care (more than 350 transportations performed). The total number of health professionals (MD, nurses, etc.) placed at camps was 104. Common practices were implemented in the recording and collection of psychological and medical history forms at the camps. Protocols regarding maternity care, gender based violence and handling of violent incidents were produced and distributed at personnel working at camps. Finally, 290 health care professionals were placed at primary healthcare units, public hospitals and the National Center for Emergency Care at affected regions. The program has, also, supported training activities inside the camps and resulted to better coordination of offered services on site.Keywords: migrants, refugees, public health, syndromic surveillance, national health care system, primary care, emergency health response
Procedia PDF Downloads 21424687 Opportunities for Reducing Post-Harvest Losses of Cactus Pear (Opuntia Ficus-Indica) to Improve Small-Holder Farmers Income in Eastern Tigray, Northern Ethiopia: Value Chain Approach
Authors: Meron Zenaselase Rata, Euridice Leyequien Abarca
Abstract:
The production of major crops in Northern Ethiopia, especially the Tigray Region, is at subsistence level due to drought, erratic rainfall, and poor soil fertility. Since cactus pear is a drought-resistant plant, it is considered as a lifesaver fruit and a strategy for poverty reduction in a drought-affected area of the region. Despite its contribution to household income and food security in the area, the cactus pear sub-sector is experiencing many constraints with limited attention given to its post-harvest loss management. Therefore, this research was carried out to identify opportunities for reducing post-harvest losses and recommend possible strategies to reduce post-harvest losses, thereby improving production and smallholder’s income. Both probability and non-probability sampling techniques were employed to collect the data. Ganta Afeshum district was selected from Eastern Tigray, and two peasant associations (Buket and Golea) were also selected from the district purposively for being potential in cactus pear production. Simple random sampling techniques were employed to survey 30 households from each of the two peasant associations, and a semi-structured questionnaire was used as a tool for data collection. Moreover, in this research 2 collectors, 2 wholesalers, 1 processor, 3 retailers, 2 consumers were interviewed; and two focus group discussion was also done with 14 key farmers using semi-structured checklist; and key informant interview with governmental and non-governmental organizations were interviewed to gather more information about the cactus pear production, post-harvest losses, the strategies used to reduce the post-harvest losses and suggestions to improve the post-harvest management. To enter and analyze the quantitative data, SPSS version 20 was used, whereas MS-word were used to transcribe the qualitative data. The data were presented using frequency and descriptive tables and graphs. The data analysis was also done using a chain map, correlations, stakeholder matrix, and gross margin. Mean comparisons like ANOVA and t-test between variables were used. The analysis result shows that the present cactus pear value chain involves main actors and supporters. However, there is inadequate information flow and informal market linkages among actors in the cactus pear value chain. The farmer's gross margin is higher when they sell to the processor than sell to collectors. The significant postharvest loss in the cactus pear value chain is at the producer level, followed by wholesalers and retailers. The maximum and minimum volume of post-harvest losses at the producer level is 4212 and 240 kgs per season. The post-harvest loss was caused by limited farmers skill on-farm management and harvesting, low market price, limited market information, absence of producer organization, poor post-harvest handling, absence of cold storage, absence of collection centers, poor infrastructure, inadequate credit access, using traditional transportation system, absence of quality control, illegal traders, inadequate research and extension services and using inappropriate packaging material. Therefore, some of the recommendations were providing adequate practical training, forming producer organizations, and constructing collection centers.Keywords: cactus pear, post-harvest losses, profit margin, value-chain
Procedia PDF Downloads 14224686 Getting to Know ICU Nurses and Their Duties
Authors: Masih Nikgou
Abstract:
ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite
Procedia PDF Downloads 8424685 Privatising Higher Education: Imparting Quality in Academics
Authors: Manish Khanna
Abstract:
Higher education seeks to preserve, transmit and advance knowledge. It is one of the most important instruments of change and progress. The observation of Kothari Commission (1964-66) is true even today; The destiny of India is now being shaped in her classrooms. This, we believe, is no more rhetoric. In the world based on science and technology it is education that determines the level of prosperity, welfare, and security of the people. On the quality and number of persons coming out of our schools and colleges will depend our success in the great enterprise of national reconstruction.Keywords: higher education, quality in academics, Kothari commission, privatising higher education
Procedia PDF Downloads 48824684 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 20724683 Measuring Stakeholder Engagement and Drivers of Success in Ethiopian Tourism Sector
Authors: Gezahegn Gizaw
Abstract:
The FDRE Tourism Training Institute organizes forums for debates, best practices exchange and focus group discussions to forge a sustainable and growing tourism sector while minimizing negative impacts on the environment, communities, and cultures. This study aimed at applying empirical research method to identify and quantify relative importance of success factors and individual engagement indicators that were identified in these forums. Response to the 12-question survey was collected from a total of 437 respondents in academic training institutes (212), business executive and employee (204) and non-academic government offices (21). Overall, capacity building was perceived as the most important driver of success for stakeholder engagement. Business executive and employee category rated capacity building as the most important driver of success (53%), followed by decision-making process (27%) and community participation (20%). Among educators and students, both capacity building and decision-making process were perceived as the most important factors (40% of respondents), whereas community participation was perceived as the most important success factor only by 20% of respondents. Individual engagement score in capacity building, decision-making process and community participation showed highest variability by educational level of participants (variance of 3.4% - 5.2%, p<0.001). Individual engagement score in capacity building was highly correlated to perceived benefit of training on improved efficiency, job security, higher customer satisfaction and self-esteem. On the other hand, individual engagement score in decision making process was highly correlated to its perceived benefit on lowering business costs, improving ability to meet the needs of a target market, job security, self-esteem and more teamwork. The study provides a set of recommendations that help educators, business executives and policy makers to maximize the individual and synergetic effect of training, decision making process on sustainability and growth of the tourism sector in Ethiopia.Keywords: engagement score, driver of success, capacity building, tourism
Procedia PDF Downloads 8224682 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 13824681 Learning Compression Techniques on Smart Phone
Authors: Farouk Lawan Gambo, Hamada Mohammad
Abstract:
Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.Keywords: data compression, learning preference, mobile learning, multimedia
Procedia PDF Downloads 45424680 Investigation of Delivery of Triple Play Services
Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 54324679 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures
Authors: Karine B. de Oliveira, Carina F. Dorneles
Abstract:
The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.Keywords: context, data source, index, matching, search, similarity, structure
Procedia PDF Downloads 36624678 Assessment of the Impact of Family Care Team in the District Health System of Regional Health, Thailand
Authors: Nithra Kitreerawutiwong, Sunsanee Mekrungrongwong, Artitaya Wongwonsin, Chakkraphan Phetphoom, Buaploy Phromjang
Abstract:
Background: Thailand has implemented a district health system based on the concept of primary health care. Since 2014, Family Care Team (FCT) was launched to improve the quality of care through a multidisciplinary team include not only the health sector but also social sector work together. FCT classified into 3 levels: district, sub-district, and community. This system now consists of 66,353 teams, including 3,890 teams at district level, 12,237 teams at the sub-district level, and 50,326 teams at the community level. There is a report regarding assessment the situation and perception on FCT, however, relatively few examined the operationality of this policy. This study aimed to explore the perception of district manager on the process of the implementation of FCT policy and the factors associating to implement FCT in the district health system. Methods/Results: Forty in-depth interviews were performed: 5 of primary care manager at the provincial medical health office, 5 of community hospital director, 5 of district administrative health office, 10 of sub-district health promoting hospital, and 10 of local organization. Semi-structure interview guidelines were used in the discussions. The data was analyzed by thematic analysis. This policy was formulated based on the demographic change and epidemiology transition to serve a long term care for elderly. Facilitator factors are social capital in district health systems such as family health leader and multidisciplinary team. Barrier factors are communication to the frontline provider and local organization. The output of this policy in relation to the structure of FCT is well-defined. Unanticipated effects include training of FCT in community level. Conclusion: Early feedback from healthcare manager is valuable information for the improvement of FCT to function optimally. Moreover, in the long term, health outcome need to be evaluated.Keywords: family care team, district health system, primary care, qualitative study
Procedia PDF Downloads 41224677 Spatially Random Sampling for Retail Food Risk Factors Study
Authors: Guilan Huang
Abstract:
In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling
Procedia PDF Downloads 35224676 Automatic MC/DC Test Data Generation from Software Module Description
Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau
Abstract:
Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage
Procedia PDF Downloads 44824675 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover
Authors: M. Osipova
Abstract:
Thanks to informational technologies development every sphere of economics is becoming more and more data-centralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.Keywords: human resources management, salary expectations, statistics, turnover
Procedia PDF Downloads 35724674 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems. The challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.Keywords: biometric databases, multimodal biometrics, security authentication, digital watermarking
Procedia PDF Downloads 39424673 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 36724672 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 104