Search results for: feed processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4780

Search results for: feed processing

1660 Evaluation of Monoterpenes Induction in Ugni molinae Ecotypes Subjected to a Red Grape Caterpillar (Lepidoptera: Arctiidae) Herbivory

Authors: Manuel Chacon-Fuentes, Leonardo Bardehle, Marcelo Lizama, Claudio Reyes, Andres Quiroz

Abstract:

The insect-plant interaction is a complex process in which the plant is able to release chemical signaling that modifies the behavior of insects. Insect herbivory can trigger mechanisms that allow the increase in the production of secondary metabolites that allow coping against the herbivores. Monoterpenes are a kind of secondary metabolites involved in direct defense acting as repellents of herbivorous or even in indirect defense acting as attractants for insect predators. In addition, an increase of the monoterpenes concentration is an effect commonly associated with the herbivory. Hence, plants subjected to damage by herbivory increase the monoterpenes production in comparison to plants without herbivory. In this framework, co-evolutionary aspects play a fundamental role in the adaptation of the herbivorous to their host and in the counter-adaptive strategies of the plants to avoid the herbivorous. In this context, Ugni molinae 'murtilla' is a native shrub from Chile characterized by its antioxidant activity mainly related to the phenolic compounds presents in its fruits. The larval stage of the red grape caterpillar Chilesia rudis Butler (Lepidoptera: Arctiidae) has been reported as an important defoliator of U. molinae. This insect is native from Chile and probably has been involved in a co-evolutionary process with murtilla. Therefore, we hypothesized that herbivory by the red grape caterpillar increases the emission of monoterpenes in Ugni molinae. Ecotypes 19-1 and 22-1 of murtilla were established and maintained at 25° C in the Laboratorio de Química Ecológica at Universidad de La Frontera. Red grape caterpillars of ⁓40 mm were collected near to Temuco (Chile) from grasses, and they were deprived of food for 24 h before performing the assays. Ten caterpillars were placed on the foliage of the ecotypes 19-1 and 22-1 and allowed to feed during 48 h. After this time, caterpillars were removed from the ecotypes and monoterpenes were collected. A glass chamber was used to enclose the ecotypes and a Porapak-Q column was used to trap the monoterpenes. After 24 h of capturing, columns were desorbed with hexane. Then, samples were injected in a gas chromatograph coupled to mass spectrometer and monoterpenes were determined according to the NIST library. All the experiments were performed in triplicate. Results showed that α-pinene, β-phellandrene, limonene, and 1,8 cineole were the main monoterpenes released by murtilla ecotypes. For the ecotype 19-1, the abundance of α-pinene was significantly higher in plants subjected to herbivory (100%) in relation to control plants (54.58%). Moreover, β-phellandrene and 1,8 cineole were observed only in control plants. For ecotype 22-1, there was no significant difference in monoterpenes abundance. In conclusion, the results suggest a trade-off of β-phellandrene and 1,8 cineole in response to herbivory damage by red grape caterpillar generating an increase in α-pinene abundance.

Keywords: Chilesia rudis, gas chromatography, monoterpenes, Ugni molinae

Procedia PDF Downloads 152
1659 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
1658 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
1657 A Review on Agricultural Landscapes as a Habitat of Rodents

Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter

Abstract:

In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.

Keywords: agricultural landscapes, food, indicator species, shelter

Procedia PDF Downloads 169
1656 Analysing Waste Management Options in the Printing Industry: Case of a South African Company

Authors: Stanley Fore

Abstract:

The case study company is one of the leading newsprint companies in South Africa. The company has achieved this status through operational expansion, diversification and investing in cutting-edge technology. They have a reputation for the highest quality and personalised service that transcends borders and industries. The company offers a wide variety of small and large scales printing services. The company is faced with the challenge of significant waste production during normal operations. The company generates 1200 kg of plastic waste and 60 – 70 tonnes of paper waste per month. The company operates a waste management process currently, whereby waste paper is sold, at low cost, to recycling firms for further processing. Having considered the quantity of waste being generated, the company has embarked on a venture to find a more profitable solution to its current waste production. As waste management and recycling is not the company’s core business, the aim of the venture is to implement a secondary profitable waste process business. The venture will be expedited as a strategic project. This research aims to estimate the financial feasibility of a selected solution as well as the impact of non-financial considerations thereof. The financial feasibility is analysed using metrics such as Payback period; internal rate of return and net present value.

Keywords: waste, printing industry, up-cycling, management

Procedia PDF Downloads 262
1655 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity

Authors: Amir Amiri, Naghmeh Morakabati

Abstract:

During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.

Keywords: chitosan, encapsulation, essential oil, nanogel

Procedia PDF Downloads 274
1654 Plasma Lipid Profiles and Atherogenic Indices of Rats Fed Raw and Processed Jack Fruit (Artocarpus heterophyllus) Seeds Diets at Different Concentrations

Authors: O. E. Okafor, L. U. S. Ezeanyika, C. G. Nkwonta, C. J. Okonkwo

Abstract:

The effect of processing on plasma lipid profile and atherogenic indices of rats fed Artocarpus heterophyllus seed diets at different concentrations were investigated. Fifty five rats were used for this study, they were divided into eleven groups of five rats each (one control group and ten test groups), the test groups were fed raw, boiled, roasted, fermented, and soaked diets at 10 % and 40% concentrations. The study lasted for thirty five days. The diets led to significant decrease (p < 0.05) in plasma cholesterol and triacylglycerol of rats fed 10% and 40% concentrations of the diets, and a significant increase (p < 0.05) in high density lipoprotein (HDL) levels at 40% concentrations of the test diets. The diets also produced decrease in low density lipoprotein (LDL), very low density lipoprotein (VLDL), cardiac risk ratio (CRR), atherogenic index of plasma (AIP) and atherogenic coefficient (AC) at 40% concentrations except the soaked group that showed slight elevation of LDL, CRR, AC and AIP at 40% concentration. Artocarpus heterophyllus seeds could be beneficial to health because of its ability to increase plasma HDL and reduce plasma LDL, VLDL, cholesterol, triglycerides and atherogenic indices at higher diet concentration.

Keywords: artocarpus heterophyllus, atherogenic indices, concentrations, lipid profile

Procedia PDF Downloads 302
1653 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 199
1652 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 220
1651 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 70
1650 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility

Authors: B. Casper

Abstract:

The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.

Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning

Procedia PDF Downloads 128
1649 Role of Geomatics in Architectural and Cultural Conservation

Authors: Shweta Lall

Abstract:

The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.

Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing

Procedia PDF Downloads 147
1648 Collaboration between Dietician and Occupational Therapist, Promotes Independent Functional Eating in Tube Weaning Process of Mechanical Ventilated Patients

Authors: Inbal Zuriely, Yonit Weiss, Hilla Zaharoni, Hadas Lewkowicz, Tatiana Vander, Tarif Bader

Abstract:

early active movement, along with adjusting optimal nutrition, prevents aggravation of muscle degeneracy and functional decline. Eating is a basic activity of daily life, which reflects the patient's independence. When eating and feeding are experienced successfully, they lead to a sense of pleasure and satisfaction. However, when they are experienced as a difficulty, they might evoke feelings of helplessness and frustration. This stresses the essential process of gradual weaning off the enteral feeding tube. the work describes the collaboration of a dietitian, determining the nutritional needs of patients undergoing enteral tube weaning as part of the rehabilitation process, with the suited treatment of an occupational therapist. Occupational therapy intervention regarding eating capabilities focuses on improving the required motor and cognitive components, along with environmental adjustments and aids, imparting eating strategies and training to patients and their families. The project was conducted in the long-term, ventilated patients’ department at the Herzfeld Rehabilitation Geriatric Medical Center on patients undergoing enteral tube weaning with the staff’s assistance. Establishing continuous collaboration between the dietician and the occupational therapist, starting from the beginning of the feeding-tube weaning process: 1.The dietician updates the occupational therapist about the start of the process and the approved diet. 2.The occupational therapist performs cognitive, motor, and functional assessments and treatments regarding the patient’s eating capabilities and recommends the required adjustments for independent eating according to the FIM (Functional Independence Measure) scale. 3.The occupational therapist closely follows up on the patient’s degree of independence in eating and provides a repeated update to the dietician. 4.The dietician accordingly guides the ward staff on whether and how to feed the patient or allow independent eating. The project aimed to promote patients toward independent feeding, which leads to a sense of empowerment, enjoyment of the eating experience, and progress of functional ability, along with performing active movements that will motivate mobilization. From the beginning of 2022, 26 patients participated in the project. 79% of all patients who started the weaning process from tube feeding achieved different levels of independence in feeding (independence levels ranged from supervision (FIM-5) to complete independence (FIM-7). The integration of occupational therapy and dietary treatment is based on a patient-centered approach while considering the patient’s personal needs, preferences, and goals. This interdisciplinary partnership is essential for meeting the complex needs of prolonged mechanically ventilated patients and promotes independent functioning and quality of life.

Keywords: dietary, mechanical ventilation, occupational therapy, tube feeding weaning

Procedia PDF Downloads 78
1647 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 67
1646 Crop Breeding for Low Input Farming Systems and Appropriate Breeding Strategies

Authors: Baye Berihun Getahun, Mulugeta Atnaf Tiruneh, Richard G. F. Visser

Abstract:

Resource-poor farmers practice low-input farming systems, and yet, most breeding programs give less attention to this huge farming system, which serves as a source of food and income for several people in developing countries. The high-input conventional breeding system appears to have failed to adequately meet the needs and requirements of 'difficult' environments operating under this system. Moreover, the unavailability of resources for crop production is getting for their peaks, the environment is maltreated by excessive use of agrochemicals, crop productivity reaches its plateau stage, particularly in the developed nations, the world population is increasing, and food shortage sustained to persist for poor societies. In various parts of the world, genetic gain at the farmers' level remains low which could be associated with low adoption of crop varieties, which have been developed under high input systems. Farmers usually use their local varieties and apply minimum inputs as a risk-avoiding and cost-minimizing strategy. This evidence indicates that the conventional high-input plant breeding system has failed to feed the world population, and the world is moving further away from the United Nations' goals of ending hunger, food insecurity, and malnutrition. In this review, we discussed the rationality of focused breeding programs for low-input farming systems and, the technical aspect of crop breeding that accommodates future food needs and its significance for developing countries in the decreasing scenario of resources required for crop production. To this end, the application of exotic introgression techniques like polyploidization, pan-genomics, comparative genomics, and De novo domestication as a pre-breeding technique has been discussed in the review to exploit the untapped genetic diversity of the crop wild relatives (CWRs). Desired recombinants developed at the pre-breeding stage are exploited through appropriate breeding approaches such as evolutionary plant breeding (EPB), rhizosphere-related traits breeding, and participatory plant breeding approaches. Populations advanced through evolutionary breeding like composite cross populations (CCPs) and rhizosphere-associated traits breeding approach that provides opportunities for improving abiotic and biotic soil stress, nutrient acquisition capacity, and crop microbe interaction in improved varieties have been reviewed. Overall, we conclude that low input farming system is a huge farming system that requires distinctive breeding approaches, and the exotic pre-breeding introgression techniques and the appropriate breeding approaches which deploy the skills and knowledge of both breeders and farmers are vital to develop heterogeneous landrace populations, which are effective for farmers practicing low input farming across the world.

Keywords: low input farming, evolutionary plant breeding, composite cross population, participatory plant breeding

Procedia PDF Downloads 52
1645 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
1644 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara

Authors: Rafik Baouche, Rabah Chaouchi

Abstract:

This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.

Keywords: stress, imagery, breakouts, sahara

Procedia PDF Downloads 75
1643 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
1642 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
1641 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
1640 Corpus-Based Analysis on the Translatability of Conceptual Vagueness in Traditional Chinese Medicine Classics Huang Di Nei Jing

Authors: Yan Yue

Abstract:

Huang Di Nei Jing (HDNJ) is one of the significant traditional Chinese medicine (TCM) classics which lays the foundation of TCM theory and practice. It is an important work for the world to study the ancient civilizations and medical history of China. Language in HDNJ is highly concise and vague, and notably challenging to translate. This paper investigates the translatability of one particular vagueness in HDNJ: the conceptual vagueness which carries the Chinese philosophical and cultural connotations. The corpora tool Sketch Engine is used to provide potential online contexts and word behaviors. Selected two English translations of HDNJ by TCM practitioner and non-practitioner are used to examine frequency and distribution of linguistic features of the translation. It was found the hypothesis about the universals of translated language (explicitation, normalisation) is true in one translation, but it is on the sacrifice of some original contextual connotations. Transliteration is purposefully used in the second translation to retain the original flavor, which is argued as a violation of the principle of relevance in communication because it yields little contextual effects and demands more processing effort of the reader. The translatability of conceptual vagueness in HDNJ is constrained by source language context and the reader’s cognitive environment.

Keywords: corpus-based translation, translatability, TCM classics, vague language

Procedia PDF Downloads 377
1639 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 263
1638 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137
1637 Use Process Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker from Coconut Husk Fibers-Filled Polylactide-Based Nanocomposites

Authors: Imam Wierawansyah Eltara, Iftitah, Agus Ismail

Abstract:

In the present work, cellulose nanowhiskers (CNW) extracted from coconut husk fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of L-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. In theory, evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.

Keywords: cellulose nanowhiskers, nanocomposites, coconut husk fiber, ring opening polymerization

Procedia PDF Downloads 317
1636 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
1635 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
1634 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 246
1633 Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)

Authors: M. S. Tajul Islam, Md. Zahangir Alam

Abstract:

To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas.

Keywords: POME, enzymatic pre-treatment, biogas, lignocellulosic biomass, anaerobic digestion

Procedia PDF Downloads 550
1632 Application of Industrial Ecology to the INSPIRA Zone: Territory Planification and New Activities

Authors: Mary Hanhoun, Jilla Bamarni, Anne-Sophie Bougard

Abstract:

INSPIR’ECO is a 18-month research and innovation project that aims to specify and develop a tool to offer new services for industrials and territorial planners/managers based on Industrial Ecology Principles. This project is carried out on the territory of Salaise Sablons and the services are designed to be deployed on other territories. Salaise-Sablons area is located in the limit of 5 departments on a major European economic axis multimodal traffic (river, rail and road). The perimeter of 330 ha includes 90 hectares occupied by 20 companies, with a total of 900 jobs, and represents a significant potential basin of development. The project involves five multi-disciplinary partners (Syndicat Mixte INSPIRA, ENGIE, IDEEL, IDEAs Laboratory and TREDI). INSPIR’ECO project is based on the principles that local stakeholders need services to pool, share their activities/equipment/purchases/materials. These services aims to : 1. initiate and promote exchanges between existing companies and 2. identify synergies between pre-existing industries and future companies that could be implemented in INSPIRA. These eco-industrial synergies can be related to: the recovery / exchange of industrial flows (industrial wastewater, waste, by-products, etc.); the pooling of business services (collective waste management, stormwater collection and reuse, transport, etc.); the sharing of equipments (boiler, steam production, wastewater treatment unit, etc.) or resources (splitting jobs cost, etc.); and the creation of new activities (interface activities necessary for by-product recovery, development of products or services from a newly identified resource, etc.). These services are based on IT tool used by the interested local stakeholders that intends to allow local stakeholders to take decisions. Thus, this IT tool: - include an economic and environmental assessment of each implantation or pooling/sharing scenarios for existing or further industries; - is meant for industrial and territorial manager/planners - is designed to be used for each new industrial project. - The specification of the IT tool is made through an agile process all along INSPIR’ECO project fed with: - Users expectations thanks to workshop sessions where mock-up interfaces are displayed; - Data availability based on local and industrial data inventory. These input allow to specify the tool not only with technical and methodological constraints (notably the ones from economic and environmental assessments) but also with data availability and users expectations. A feedback on innovative resource management initiatives in port areas has been realized in the beginning of the project to feed the designing services step.

Keywords: development opportunities, INSPIR’ECO, INSPIRA, industrial ecology, planification, synergy identification

Procedia PDF Downloads 163
1631 Increasing Redness and Microbial Stability of Low Nitrite Chicken Sausage by Encapsulated Tomato Pomace Extract

Authors: Bung-Orn Hemung, Nachayut Chanshotigul, Koo Bok Chin

Abstract:

Tomato pomace (TP) is the waste from tomato processing plants and its utilization as food ingredient may provide sustainable industry by reducing waste. TP was extracted by ethanol using microwave-assisted method at 180W for 90s. The ethanol was evaporated out, and an extract was encapsulated with maltodextrin (1:10) by spray drying to obtain an encapsulated TP extract (ETPE). The redness (a value) of ETPE powder was 6.5±0.05, and it was used as natural ingredient in the low-nitrite chicken sausage. Chicken emulsion sausage was prepared at 25 mg/kg of nitrite for being control. Effect of ETPE (1.0%) was evaluated along with the reference (150 mg/kg of nitrite without ETPE). The redness (a value) of sausage with ETPE was found at 6.8±0.03, which was higher than those of reference and control, which were at 4.8±.022 and 5.1±0.15, respectively. However, hardness, expressible moisture content and cooking yield values were reduced slightly. During storage at 10 °C in the air packed condition for 1 week, changes in color, pH, redness, and thiobarbituric acid reactive substances value were not significantly different. However, total microbial count of sausage samples with ETPE was lower than control for a 1 log cycle, suggesting microbial stability. Therefore, the addition of ETPE could be an alternative strategy to utilize TP as a natural colorant and antimicrobial agent to extend the shelf life of low-nitrite chicken sausage.

Keywords: antimicrobial ingredient, chicken sausage, ethanolic extract, low-nitrite sausage, tomato pomace

Procedia PDF Downloads 208