Search results for: combined inhibition
517 The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products
Authors: Loreta Serniene, Dalia Sekmokiene, Justina Tomkeviciute, Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Kristina Kondrotiene, Neringa Kasetiene, Mindaugas Malakauskas
Abstract:
One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718.Keywords: antioxidant properties, antimicrobial properties, cinnamon, CO₂ plant extracts, dairy products, essential oils, lemon myrtle
Procedia PDF Downloads 204516 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 184515 Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel
Authors: S. R. Dehghani, G. F. Naterer, Y. S. Muzychka
Abstract:
Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels.Keywords: evaporation, sea spray, marine icing, numerical solution, trajectory
Procedia PDF Downloads 220514 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling
Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng
Abstract:
This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT
Procedia PDF Downloads 87513 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery
Authors: Abebe Taye
Abstract:
The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability
Procedia PDF Downloads 75512 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 111511 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming
Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero
Abstract:
Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up
Procedia PDF Downloads 244510 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones
Authors: Mohamed Abdelkareem
Abstract:
Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.Keywords: GIS, remote sensing, groundwater, Egypt
Procedia PDF Downloads 98509 Development of mHealth Information in Community Based on Geographical Information: A Case Study from Saraphi District, Chiang Mai, Thailand
Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Wilawan Senaratana, Jaras Singkaew
Abstract:
Geographical information system (GIS) is a designated system widely used for collecting and analyzing geographical data. Since the introduction of ultra-mobile, 'smart' devices, investigators, clinicians, and even the general public have had powerful new tools for collecting, uploading and accessing information in the field. Epidemiology paired with GIS will increase the efficacy of preventive health care services. The objective of this study is to apply GPS location services that are available on the common mobile device with district health systems, storing data on our private cloud system. The mobile application has been developed for use on iOS, Android, and web-based platforms. The system consists of two parts of district health information, including recorded resident data forms and individual health recorded data forms, which were developed and approved by opinion sharing and public hearing. The application's graphical user interface was developed using HTML5 and PHP with MySQL as a database management system (DBMS). The reporting module of the developed software displays data in a variety of views, from traditional tables to various types of high-resolution, layered graphics, incorporating map location information with street views from Google Maps. Multi-extension exporting is also supported, utilizing standard platforms such as PDF, PNG, JPG, and XLS. The data were collected in the database beginning in March 2013, by district health volunteers and district youth volunteers who had completed the application training program. District health information consisted of patients’ household coordinates, individual health data, social and economic information. This was combined with Google Street View data, collected in March 2014. Studied groups consisted of 16,085 (67.87%) and 47,811 (59.87%) of the total 23,701 households and 79,855 people were collected by the system respectively, in Saraphi district, Chiang Mai Province. The report generated from the system has had a major benefit directly to the Saraphi District Hospital. Healthcare providers are able to use the basic health data to provide a specific home health care service and also to create health promotion activities according to medical needs of the people in the community.Keywords: health, public health, GIS, geographic information system
Procedia PDF Downloads 336508 Double Burden of Malnutrition among Children under Five in Sub-Saharan Africa and Other Least Developed Countries: A Systematic Review
Authors: Getenet Dessie, Jinhu Li, Son Nghiem, Tinh Doan
Abstract:
Background: Concerns regarding malnutrition have evolved from focusing solely on single forms to addressing the simultaneous occurrence of multiple types, commonly referred to as the double or triple burden of malnutrition. Nevertheless, data concerning the concurrent occurrence of various types of malnutrition are scarce. Therefore, this systematic review and meta-analysis aims to assess the pooled prevalence of the double burden of malnutrition among children under five in Sub-Saharan Africa and other least-developed countries (LDCs). Methods: Electronic, web-based searches were conducted from January 15 to June 28, 2023, across several databases, including PubMed, Embase, Google Scholar, and the World Health Organization's Hinari portal, as well as other search engines, to identify primary studies published up to June 28, 2023. Laboratory-based cross-sectional studies on children under the age of five were included. Two independent authors assessed the risk of bias and the quality of the identified articles. The primary outcomes of this study were micronutrient deficiencies and the comorbidity of stunting and anemia, as well as wasting and anemia. The random-effects model was utilized for analysis. The association of identified variables with the various forms of malnutrition was also assessed using adjusted odds ratios (AOR) with a 95% confidence interval (CI). This review was registered in PROSPERO with the reference number CRD42023409483. Findings: The electronic search generated 6,087 articles, 93 of which matched the inclusion criteria for the final meta-analysis. Micronutrient deficiencies were prevalent among children under five in Sub-Saharan Africa and other LDCs, with rates ranging from 16.63% among 25,169 participants for vitamin A deficiency to 50.90% among 3,936 participants for iodine deficiency. Iron deficiency anemia affected 20.56% of the 63,121 participants. The combined prevalence of wasting anemia and stunting anemia was 5.41% among 64,709 participants and 19.98% among 66,016 participants, respectively. Both stunting and vitamin A supplementation were associated with vitamin A and iron deficiencies, with adjusted odds ratios (AOR) of 1.54 (95% CI: 1.01, 2.37) and 1.37 (95% CI: 1.21, 1.55), respectively. Interpretation: The prevalence of the double burden of malnutrition among children under the age of five was notably high in Sub-Saharan Africa and other LDCs. These findings indicate a need for increased attention and a focus on understanding the factors influencing this double burden of malnutrition.Keywords: children, Sub-Saharan Africa, least developed countries, double burden of malnutrition, systematic review, meta-analysis
Procedia PDF Downloads 81507 Cognitive Translation and Conceptual Wine Tasting Metaphors: A Corpus-Based Research
Authors: Christine Demaecker
Abstract:
Many researchers have underlined the importance of metaphors in specialised language. Their use of specific domains helps us understand the conceptualisations used to communicate new ideas or difficult topics. Within the wide area of specialised discourse, wine tasting is a very specific example because it is almost exclusively metaphoric. Wine tasting metaphors express various conceptualisations. They are not linguistic but rather conceptual, as defined by Lakoff & Johnson. They correspond to the linguistic expression of a mental projection from a well-known or more concrete source domain onto the target domain, which is the taste of wine. But unlike most specialised terminologies, the vocabulary is never clearly defined. When metaphorical terms are listed in dictionaries, their definitions remain vague, unclear, and circular. They cannot be replaced by literal linguistic expressions. This makes it impossible to transfer them into another language with the traditional linguistic translation methods. Qualitative research investigates whether wine tasting metaphors could rather be translated with the cognitive translation process, as well described by Nili Mandelblit (1995). The research is based on a corpus compiled from two high-profile wine guides; the Parker’s Wine Buyer’s Guide and its translation into French and the Guide Hachette des Vins and its translation into English. In this small corpus with a total of 68,826 words, 170 metaphoric expressions have been identified in the original English text and 180 in the original French text. They have been selected with the MIPVU Metaphor Identification Procedure developed at the Vrije Universiteit Amsterdam. The selection demonstrates that both languages use the same set of conceptualisations, which are often combined in wine tasting notes, creating conceptual integrations or blends. The comparison of expressions in the source and target texts also demonstrates the use of the cognitive translation approach. In accordance with the principle of relevance, the translation always uses target language conceptualisations, but compared to the original, the highlighting of the projection is often different. Also, when original metaphors are complex with a combination of conceptualisations, at least one element of the original metaphor underlies the target expression. This approach perfectly integrates into Lederer’s interpretative model of translation (2006). In this triangular model, the transfer of conceptualisation could be included at the level of ‘deverbalisation/reverbalisation’, the crucial stage of the model, where the extraction of meaning combines with the encyclopedic background to generate the target text.Keywords: cognitive translation, conceptual integration, conceptual metaphor, interpretative model of translation, wine tasting metaphor
Procedia PDF Downloads 131506 The Role of Learning in Stimulation Policies to Increase Participation in Lifelong Development: A Government Policy Analysis
Authors: Björn de Kruijf, Arjen Edzes, Sietske Waslander
Abstract:
In an ever-quickly changing society, lifelong development is seen as a solution to labor market problems by politicians and policymakers. In this paper, we investigate how policy instruments are used to increase participation in lifelong development and on which behavioral principles policy is based. Digitization, automation, and an aging population change society and the labor market accordingly. Skills that were once most sought after in the workforce can become abundantly present. For people to remain relevant in the working population, they need to continue adapting new skills useful in the current labor market. Many reports have been written that focus on the role of lifelong development in this changing society and how lifelong development can help keep people adapt and stay relevant. Inspired by these reports, governments have implemented a broad range of policies to support participation in lifelong development. The question we ask ourselves is how government policies promote participation in lifelong development. This stems from a complex interplay of policy instruments and learning. Regulation, economic and soft instruments can be combined to promote lifelong development, and different types of education further complex policies on lifelong development. Literature suggests that different stages in people’s lives might warrant different methods of learning. Governments could anticipate this in their policies. In order to influence people’s behavior, the government can tap into a broad range of sociological, psychological, and (behavioral) economic principles. The traditional economic assumption that behavior is rational is known to be only partially true, and the government can use many biases in human behavior to stimulate participation in lifelong development. In this paper, we also try to find which biases the government taps into to promote participation if they tap into any of these biases. The goal of this paper is to analyze government policies intended to promote participation in lifelong development. To do this, we develop a framework to analyze the policies on lifelong development. We specifically incorporate the role of learning and the behavioral principles underlying policy instruments in the framework. We apply this framework to the case of the Netherlands, where we examine a set of policy documents. We single out the policies the government has put in place and how they are vertically and horizontally related. Afterward, we apply the framework and classify the individual policies by policy instrument and by type of learning. We find that the Dutch government focuses on formal and non-formal learning in their policy instruments. However, the literature suggests that learning at a later age is mainly done in an informal manner through experiences.Keywords: learning, lifelong development, policy analysis, policy instruments
Procedia PDF Downloads 82505 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle
Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat
Abstract:
Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats
Procedia PDF Downloads 253504 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed
Authors: Ravi Inder Singh
Abstract:
Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations
Procedia PDF Downloads 510503 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts
Authors: Yawen Dai, Ping Cheng, Jian Ru Gong
Abstract:
Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting
Procedia PDF Downloads 141502 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea
Authors: Maryam Beiranvand
Abstract:
Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria
Procedia PDF Downloads 77501 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source
Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka
Abstract:
After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.Keywords: neutron source, neutron resonance, nuclear debris, time of flight
Procedia PDF Downloads 238500 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City
Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng
Abstract:
Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.Keywords: human perception, public space quality, deep learning, negative elements, street images
Procedia PDF Downloads 115499 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape
Authors: Adedayo Adeleke, Dineo Pule
Abstract:
The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.Keywords: roof potential, rainwater harvesting, urban plan, roof extraction
Procedia PDF Downloads 115498 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept
Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani
Abstract:
Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy
Procedia PDF Downloads 343497 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration
Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa
Abstract:
This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools
Procedia PDF Downloads 253496 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop
Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti
Abstract:
The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.Keywords: residual boron, zinc, rice, wheat
Procedia PDF Downloads 155495 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines
Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey
Abstract:
The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology
Procedia PDF Downloads 82494 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 131493 Response of Planktonic and Aggregated Bacterial Cells to Water Disinfection with Photodynamic Inactivation
Authors: Thayse Marques Passos, Brid Quilty, Mary Pryce
Abstract:
The interest in developing alternative techniques to obtain safe water, free from pathogens and hazardous substances, is growing in recent times. The photodynamic inactivation of microorganisms (PDI) is a promising ecologically-friendly and multi-target approach for water disinfection. It uses visible light as an energy source combined with a photosensitiser (PS) to transfer energy/electrons to a substrate or molecular oxygen generating reactive oxygen species, which cause cidal effects towards cells. PDI has mainly been used in clinical studies and investigations on its application to disinfect water is relatively recent. The majority of studies use planktonic cells. However, in their natural environments, bacteria quite often do not occur as freely suspended cells (planktonic) but in cell aggregates that are either freely floating or attached to surfaces as biofilms. Microbes can form aggregates and biofilms as a strategy to protect them from environmental stress. As aggregates, bacteria have a better metabolic function, they communicate more efficiently, and they are more resistant to biocide compounds than their planktonic forms. Among the bacteria that are able to form aggregates are members of the genus Pseudomonas, they are a very diverse group widely distributed in the environment. Pseudomonas species can form aggregates/biofilms in water and can cause particular problems in water distribution systems. The aim of this study was to evaluate the effectiveness of photodynamic inactivation in killing a range of planktonic cells including Escherichia coli DSM 1103, Staphylococcus aureus DSM 799, Shigella sonnei DSM 5570, Salmonella enterica and Pseudomonas putida DSM 6125, and aggregating cells of Pseudomonas fluorescens DSM 50090, Pseudomonas aeruginosa PAO1. The experiments were performed in glass Petri dishes, containing the bacterial suspension and the photosensitiser, irradiated with a multi-LED (wavelengths 430nm and 660nm) for different time intervals. The responses of the cells were monitored using the pour plate technique and confocal microscopy. The study showed that bacteria belonging to Pseudomonads group tend to be more tolerant to PDI. While E. coli, S. aureus, S. sonnei and S. enterica required a dosage ranging from 39.47 J/cm2 to 59.21 J/cm2 for a 5 log reduction, Pseudomonads needed a dosage ranging from 78.94 to 118.42 J/cm2, a higher dose being required when the cells aggregated.Keywords: bacterial aggregation, photoinactivation, Pseudomonads, water disinfection
Procedia PDF Downloads 296492 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 38491 Occupational Exposure and Contamination to Antineoplastic Drugs of Healthcare Professionals in Mauritania
Authors: Antoine Villa, Moustapha Mohamedou, Florence Pilliere, Catherine Verdun-Esquer, Mathieu Molimard, Mohamed Sidatt Cheikh El Moustaph, Mireille Canal-Raffin
Abstract:
Context: In Mauritania, the activity of the National Center of Oncology (NCO) has steadily risen leading to an increase in the handling of antineoplastic drugs (AD) by healthcare professionals. In this context, the AD contamination of those professionals is a major concern for occupational physicians. It has been evaluated using biological monitoring of occupational exposure (BMOE). Methods: The intervention took place in 2015, in 2 care units, and evaluated nurses preparing and/or infusing AD and agents in charge of hygiene. Participants provided a single urine sample, at the end of the week, at the end of their shift. Five molecules were sought using specific high sensitivity methods (UHPLC-MS/MS) with very low limits of quantification (LOQ) (cyclophosphamide (CP), Ifosfamide (IF), methotrexate (MTX): 2.5ng/L; doxorubicin (Doxo): 10ng/L; α-fluoro-β-alanine (FBAL, 5-FU metabolite): 20ng/L). A healthcare worker was considered as 'contaminated' when an AD was detected at a urine concentration equal to or greater than the LOQ of the analytical method or at trace concentration. Results: Twelve persons participated (6 nurses, 6 agents in charge of hygiene). Twelve urine samples were collected and analyzed. The percentage of contamination was 66.6% for all participants (n=8/12), 100% for nurses (6/6) and 33% for agents in charge of hygiene (2/6). In 62.5% (n=5/8) of the contaminated workers, two to four of the AD were detected in the urine. CP was found in the urine of all contaminated workers. FBAL was found in four, MTX in three and Doxo in one. Only IF was not detected. Urinary concentrations (all drugs combined) ranged from 3 to 844 ng/L for nurses and from 3 to 44 ng/L for agents in charge of hygiene. The median urinary concentrations were 87 ng/L, 15.1 ng/L and 4.4 ng/L for FBAL, CP and MTX, respectively. The Doxo urinary concentration was found 218ng/L. Discussion: There is no current biological exposure index for the interpretation of AD contamination. The contamination of these healthcare professionals is therefore established by the detection of one or more AD in urine. These urinary contaminations are higher than the LOQ of the analytical methods, which must be as low as possible. Given the danger of AD, the implementation of corrective measures is essential for the staff. Biological monitoring of occupational exposure is the most reliable process to identify groups at risk, tracing insufficiently controlled exposures and as an alarm signal. These results show the necessity to educate professionals about the risks of handling AD and/or to care for treated patients.Keywords: antineoplastic drugs, Mauritania, biological monitoring of occupational exposure, contamination
Procedia PDF Downloads 316490 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 282489 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies
Authors: Mehrnaz Mostafavi
Abstract:
Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs
Procedia PDF Downloads 98488 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs
Authors: T. Topór, A. Derkowski, P. Ziemiański
Abstract:
Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.Keywords: maturation, methane sorption, organic matter, porosity, shales
Procedia PDF Downloads 236