Search results for: personalised learning plans
4931 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3504930 Small and Medium-Sized Enterprises, Flash Flooding and Organisational Resilience Capacity: Qualitative Findings on Implications of the Catastrophic 2017 Flash Flood Event in Mandra, Greece
Authors: Antonis Skouloudis, Georgios Deligiannakis, Panagiotis Vouros, Konstantinos Evangelinos, Loannis Nikolaou
Abstract:
On November 15th, 2017, a catastrophic flash flood devastated the city of Mandra in Central Greece, resulting in 24 fatalities and extensive damages to the built environment and infrastructure. It was Greece's deadliest and most destructive flood event for the past 40 years. In this paper, we examine the consequences of this event too small and medium-sized enterprises (SMEs) operating in Mandra during the flood event, which were affected by the floodwaters to varying extents. In this context, we conducted semi-structured interviews with business owners-managers of 45 SMEs located in flood inundated areas and are still active nowadays, based on an interview guide that spanned 27 topics. The topics pertained to the disaster experience of the business and business owners-managers, knowledge and attitudes towards climate change and extreme weather, aspects of disaster preparedness and related assistance needs. Our findings reveal that the vast majority of the affected businesses experienced heavy damages in equipment and infrastructure or total destruction, which resulted in business interruption from several weeks up to several months. Assistance from relatives or friends helped for the damage repairs and business recovery, while state compensations were deemed insufficient compared to the extent of the damages. Most interviewees pinpoint flooding as one of the most critical risks, and many connect it with the climate crisis. However, they are either not willing or unable to apply property-level prevention measures in their businesses due to cost considerations or complex and cumbersome bureaucratic processes. In all cases, the business owners are fully aware of the flood hazard implications, and since the recovery from the event, they have engaged in basic mitigation measures and contingency plans in case of future flood events. Such plans include insurance contracts whenever possible (as the vast majority of the affected SMEs were uninsured at the time of the 2017 event) as well as simple relocations of critical equipment within their property. The study offers fruitful insights on latent drivers and barriers of SMEs' resilience capacity to flash flooding. In this respect, findings such as ours, highlighting tensions that underpin behavioral responses and experiences, can feed into a) bottom-up approaches for devising actionable and practical guidelines, manuals and/or standards on business preparedness to flooding, and, ultimately, b) policy-making for an enabling environment towards a flood-resilient SME sector.Keywords: flash flood, small and medium-sized enterprises, organizational resilience capacity, disaster preparedness, qualitative study
Procedia PDF Downloads 1324929 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions
Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz
Abstract:
This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle
Procedia PDF Downloads 2354928 Academic Staff Development: A Lever to Address the Challenges of the 21st Century University Classroom
Authors: Severino Machingambi
Abstract:
Most academics entering Higher education as lecturers in South Africa do not have qualifications in Education or teaching. This creates serious problems since they are not sufficiently equipped with pedagogical approaches and theories that inform their facilitation of learning strategies. This, arguably, is one of the reasons why higher education institutions are experiencing high student failure rate. In order to mitigate this problem, it is critical that higher education institutions devise internal academic staff development programmes to capacitate academics with pedagogical skills and competencies so as to enhance the quality of student learning. This paper reported on how the Teaching and Learning Development Centre of a university used design-based research methodology to conceptualise and implement an academic staff development programme for new academics at a university of technology. This approach revolves around the designing, testing and refining of an educational intervention. Design-based research is an important methodology for understanding how, when, and why educational innovations work in practice. The need for a professional development course for academics arose due to the fact that most academics at the university did not have teaching qualifications and many of them were employed straight from industry with little understanding of pedagogical approaches. This paper examines three key aspects of the programme namely, the preliminary phase, the teaching experiment and the retrospective analysis. The preliminary phase is the stage in which the problem identification takes place. The problem that this research sought to address relates to the unsatisfactory academic performance of the majority of the students in the institution. It was therefore hypothesized that the problem could be dealt with by professionalising new academics through engagement in an academic staff development programme. The teaching experiment phase afforded researchers and participants in the programme the opportunity to test and refine the proposed intervention and the design principles upon which it was based. The teaching experiment phase revolved around the testing of the new academics professional development programme. This phase created a platform for researchers and academics in the programme to experiment with various activities and instructional strategies such as case studies, observations, discussions and portfolio building. The teaching experiment phase was followed by the retrospective analysis stage in which the research team looked back and tried to give a trustworthy account of the teaching/learning process that had taken place. A questionnaire and focus group discussions were used to collect data from participants that helped to evaluate the programme and its implementation. One of the findings of this study was that academics joining university really need an academic induction programme that inducts them into the discourse of teaching and learning. The study also revealed that existing academics can be placed on formal study programmes in which they acquire educational qualifications with a view to equip them with useful classroom discourses. The study, therefore, concludes that new and existing academics in universities should be supported through induction programmes and placement on formal studies in teaching and learning so that they are capacitated as facilitators of learning.Keywords: academic staff, pedagogy, programme, staff development
Procedia PDF Downloads 1334927 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1684926 'Systems' and Its Impact on Virtual Teams and Electronic Learning
Authors: Shavindrie Cooray
Abstract:
It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.Keywords: e-learning, virtual teams, systems approach, conflicts
Procedia PDF Downloads 1374925 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals
Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan
Abstract:
Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.Keywords: active learning, game, diabetes, nutrition
Procedia PDF Downloads 1744924 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 694923 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 1384922 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study
Authors: Chui Ka Shing
Abstract:
This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.Keywords: bar model method, curriculum development, mathematics education, problem solving
Procedia PDF Downloads 2204921 Enhancing EFL Learners' Motivation and Classroom Interaction through Self-Disclosure in Moroccan Higher Education
Authors: Mohsine Jebbour
Abstract:
Motivation and classroom interaction are of prime significance for second/foreign language learning to take place effectively. Thus, a considerable amount of motivation and classroom interaction helps ensure students’ success in and continuation of learning the TL. One way to enhance students’ motivation and classroom interaction in the Moroccan EFL classroom then is through the use of self-disclosure. For the purposes of this study, self-disclosure has been defined as the verbal communication of positive personal information including opinions, feelings, experiences, family and friendship stories to classmates and teachers. This paper is meant to demonstrate that positive self-disclosure can serve as an effective tool for helping students develop favorable attitudes toward the EFL classroom (i.e., English courses, teacher of English, and classroom activities) and promoting their intrinsic motivation (IM to know and IM toward stimulation). A further objective is that since self-disclosure is reciprocal, when teachers of English reveal their personal information, students will uncover their personal matters in return. This will help ensure effective classroom participation, foster teacher-student communication, and encourage students to practice and hence improve their oral proficiency (i.e., the speaking skill). A questionnaire was used to collect data in this study. 164 undergraduate students (99 females and 65 males) from the department of English at the faculty of letters and humanities, Dher el Mehraz, Sidi Mohammed Ben Abd Allah University completed a questionnaire that assessed self-disclosure in relation to motivation (i.e., attitudes toward the learning situation and intrinsic motivation) and classroom interaction (i.e., teacher-student interaction, participation, and out-of-class communication) on a 1 to 5 scale with (1) Strongly Disagree and (5) Strongly Agree. The level of agreement on the positive dimension of self-disclosure was ranked first by the respondents. The hypothesis set at the very beginning of the study, which posited that positive self-disclosure is essential to enhancing motivation and classroom interaction in the EFL context, was confirmed. In this regard, the findings suggest that implementing self-disclosure in the Moroccan EFL classroom may serve as an effective tool to have positive affect of teacher, class and classroom activities. This in turn will encourage the learners to attend classes, enjoy the language learning activity, complete classroom assignments, participate in class discussions, and interact with their teachers and classmates. It is hoped that teachers benefit from the results of this study and hence encourage the use of positive self-disclosure to develop English language learning in the Moroccan context where opportunities of using English outside the classroom are limited.Keywords: EFL classroom, classroom interaction, motivation, self-disclosure
Procedia PDF Downloads 3134920 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 1854919 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 1314918 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 1254917 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2104916 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 464915 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1304914 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2964913 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks
Authors: Jayesh M. Patel, Bharat P. Modi
Abstract:
The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.Keywords: cellular, Wi-Fi, mobile, smart phone
Procedia PDF Downloads 3654912 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 854911 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students
Authors: Tatyana Gavrilova, Vadim Onufriev
Abstract:
Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling
Procedia PDF Downloads 3114910 Teaching Self-Advocacy Skills to Students With Learning Disabilities: The S.A.M.E. Program of Instruction
Authors: Dr. Rebecca Kimelman
Abstract:
Teaching students to self-advocate has become a central topic in special education literature and practice. However, many special education programs do not address this important skill area. To this end, I created and implemented the Self Advocacy Made Easy (S.A.M.E.) program of instruction, intended to enhance the self-advocacy skills of young adults with mild to moderate disabilities. The effectiveness of S.A.M.E., the degree to which self-advocacy skills were acquired and demonstrated by the students, the level of parental support, and the impact of culture on the process, and teachers’ beliefs and attitudes about the role of self-advocacy skills for their students were measured using action research that employed mixed methodology. Conducted at an overseas American International School, this action research study sought answers to these questions by providing an in-depth portrayal of the S.A.M.E. program, as well as the attitudes and perceptions of the stakeholders involved in the study (thirteen students, their parents, teachers and counsellors). The findings of this study were very positive. The S.A.M.E. program was found to be a valid and valuable instructional tool for teaching self-advocacy skills to students with learning disabilities and ADHD. The study showed participation in the S.A.M.E. program led to an increased understanding of the important elements of self-advocacy, an increase in students’ skills and abilities to self-advocate, and a positive increase in students’ feelings about themselves. Inclusion in the Student-Led IEP meetings, an authentic student assessment within the S.A.M.E. program, also yielded encouraging results, including a higher level of ownership of one’s profile and learning needs, a higher level of student engagement and participation in the IEP meeting, and a growing student awareness of the relevance of the document and the IEP process to their lives. Without exception, every parent believed that participating in the Student-Led IEP led to a growth in confidence in their children, including that it taught them how to ‘own’ their disability and an improvement in their communication skills. Teachers and counsellors that participated in the study felt the program was worthwhile, and led to an increase in the students’ ability to acknowledge their learning profile and to identify and request the accommodations (such as extended time or use of a calculator) they need to overcome or work around their disability. The implications for further research are many, and include an examination of the degree to which participation in S.A.M.E. fosters student achievement, the long-term effects of participation in the program, and the degree to which student participation in the Student-Led IEP meeting increases parents’ level of understanding and involvement.Keywords: self-advocacy, learning disabilities, ADHD, student-led IEP process
Procedia PDF Downloads 554909 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.Keywords: education, communication, learning, mobile collaboration, technology
Procedia PDF Downloads 2214908 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.Keywords: business school, India, learning, social media, social networking, university
Procedia PDF Downloads 2644907 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study
Authors: Krisztina Bohacs, Klaudia Markus
Abstract:
To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes
Procedia PDF Downloads 2024906 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 1894905 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers
Authors: Helen Zhang
Abstract:
Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning
Procedia PDF Downloads 1174904 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 3114903 A Study of Faculty Development Programs in India to Assist Pedagogy and Curriculum Development
Authors: Chhavi Rana, Sanjay K Jain
Abstract:
All sides of every education debate agree that quality learning happens when knowledgeable, caring teachers use sound pedagogy. Many deliberations of pedagogy make the fault of considering it as principally being about teaching. There has been lot of research about how to build a positive climate for learning, improve student curiosity, and enhance classroom association. However, these things can only be facilitated when teachers are equipped with better teaching techniques that use sound and accurate pedagogy. Pedagogy is the science and art of education. Its aims range from the full development of the human being to skills acquisition. In India, a project named Mission 10 x has been started by an esteemed IT Corporation Wipro as a faculty development programme (FDP) that particularly focus on elements that facilitated teachers in developing curriculum and new pedagogies that can lead to improvement in student engagement. This paper presents a study of these FDPs and examines (1) the parameters that help teachers in building new pedagogies (2) the extent to which appropriate usage of pedagogy is improved after the conduct of Mission 10 x FDPs, and (3) whether institutions differ in terms of their ability to convert usage of improved pedagogy into academic performance via these FDPs. The sample consisted of 2,236 students at 6 four-year engineering colleges and universities that completed several FDPs during 2012-2014. Many measures of usage of better pedagogy were linked positively with such FDPs, although some of the relationships were weak in strength. The results suggest that the usage of pedagogy were more benefited after conducting these FDPs and application of novel approaches in conducting classes.Keywords: student engagement, critical thinking; achievement, student learning, pedagogy
Procedia PDF Downloads 4214902 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 299