Search results for: organizing models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6951

Search results for: organizing models

3861 Analytical Model for Columns in Existing Reinforced Concrete Buildings

Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim

Abstract:

Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.

Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure

Procedia PDF Downloads 265
3860 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 382
3859 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 419
3858 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 408
3857 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 390
3856 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System

Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem

Abstract:

Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter

Procedia PDF Downloads 76
3855 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity

Authors: Ladislav Écsi, Roland Jančo

Abstract:

Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.

Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility

Procedia PDF Downloads 123
3854 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435
3853 Critical and Strategic Issues in Compensation, Staffing and Personnel Management in Nigeria

Authors: Shonuga Olajumoke Adedoyinsola

Abstract:

Staffing and Compensation are at the core of any employment exchange, and they serve as the defining characteristics of any employment relationship. Most organizations understand the benefits that a longer term approach to staff planning can bring and the answer to this problem lies not in trying to implement the traditional approach more effectively, but in implementing a completely different kind of process for strategic staffing. The study focuses on critical points of compensation, staffing and personnel management. The fundamentals of these programs include the elements of vision, potential, communication and motivation. The aim of the paper is to identify the most important attributes of compensation and incentives, staffing and personnel management. Research method is the analysis and synthesis of scientific literature, logical, comparative and graphic representation. On the basis of analysis, the author presents the models of these systems for positive employee attitudes and behaviors.

Keywords: compensation, employees, incentives, staffing, personnel management

Procedia PDF Downloads 299
3852 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
3851 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
3850 Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil

Authors: Débora V. Busman, Venerando E. Amaro, Mattheus da C. Prudêncio

Abstract:

Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.

Keywords: coastal erosion, prognostic model, DSAS, environmental safety

Procedia PDF Downloads 335
3849 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia

Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine

Abstract:

Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.

Keywords: asylum seekers, health status, cardiovascular disease, health promotion

Procedia PDF Downloads 103
3848 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
3847 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. It was experimentally shown that both modulations could be present in the spectrum, yet each modulation may be associated with different physical mechanisms. AM mechanisms are quite well understood and widely covered in the literature. This paper is a first attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acousto-elastic models.

Keywords: non-destructive testing, nonlinear acoustics, structural health monitoring, acousto-elasticity, local defect resonance

Procedia PDF Downloads 152
3846 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 177
3845 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 165
3844 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation

Authors: Minzheong Song

Abstract:

The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.

Keywords: smart city, smart energy, business model, business model innovation (BMI)

Procedia PDF Downloads 162
3843 Systematic Exploration and Modulation of Nano-Bio Interactions

Authors: Bing Yan

Abstract:

Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.

Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library

Procedia PDF Downloads 409
3842 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 412
3841 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes

Authors: Abdol-Hassan Doulah

Abstract:

In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.

Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity

Procedia PDF Downloads 454
3840 Leadership and Entrepreneurship in Higher Education: Fostering Innovation and Sustainability

Authors: Naziema Begum Jappie

Abstract:

Leadership and entrepreneurship in higher education have become critical components in navigating the evolving landscape of academia in the 21st century. This abstract explores the multifaceted relationship between leadership and entrepreneurship within the realm of higher education, emphasizing their roles in fostering innovation and sustainability. Higher education institutions, often characterized as slow-moving and resistant to change, are facing unprecedented challenges. Globalization, rapid technological advancements, changing student demographics, and financial constraints necessitate a reimagining of traditional models. Leadership in higher education must embrace entrepreneurial thinking to effectively address these challenges. Entrepreneurship in higher education involves cultivating a culture of innovation, risk-taking, and adaptability. Visionary leaders who promote entrepreneurship within their institutions empower faculty and staff to think creatively, seek new opportunities, and engage with external partners. These entrepreneurial efforts lead to the development of novel programs, research initiatives, and sustainable revenue streams. Innovation in curriculum and pedagogy is a central aspect of leadership and entrepreneurship in higher education. Forward-thinking leaders encourage faculty to experiment with teaching methods and technology, fostering a dynamic learning environment that prepares students for an ever-changing job market. Entrepreneurial leadership also facilitates the creation of interdisciplinary programs that address emerging fields and societal challenges. Collaboration is key to entrepreneurship in higher education. Leaders must establish partnerships with industry, government, and non-profit organizations to enhance research opportunities, secure funding, and provide real-world experiences for students. Entrepreneurial leaders leverage their institutions' resources to build networks that extend beyond campus boundaries, strengthening their positions in the global knowledge economy. Financial sustainability is a pressing concern for higher education institutions. Entrepreneurial leadership involves diversifying revenue streams through innovative fundraising campaigns, partnerships, and alternative educational models. Leaders who embrace entrepreneurship are better equipped to navigate budget constraints and ensure the long-term viability of their institutions. In conclusion, leadership and entrepreneurship are intertwined elements essential to the continued relevance and success of higher education institutions. Visionary leaders who champion entrepreneurship foster innovation, enhance the student experience, and secure the financial future of their institutions. As academia continues to evolve, leadership and entrepreneurship will remain indispensable tools in shaping the future of higher education. This abstract underscores the importance of these concepts and their potential to drive positive change within the higher education landscape.

Keywords: entrepreneurship, higher education, innovation, leadership

Procedia PDF Downloads 68
3839 Dynamic Amplification Factors of Some City Bridges

Authors: I. Paeglite, A. Paeglitis

Abstract:

The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.

Keywords: bridge, dynamic effects, load testing, dynamic amplification factor

Procedia PDF Downloads 383
3838 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm

Procedia PDF Downloads 431
3837 Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber

Authors: Olga V. Korotkaya

Abstract:

This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems.

Keywords: combustion chamber, cyclic symmetry, finite element method, liquid-propellant rocket engine, nozzle end, substructure

Procedia PDF Downloads 506
3836 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 167
3835 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 144
3834 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 410
3833 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 492
3832 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86