Search results for: optimum conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11248

Search results for: optimum conditions

8158 The Effect of Object Presentation on Action Memory in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf

Abstract:

Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.

Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children

Procedia PDF Downloads 240
8157 Recent Advancement in Fetal Electrocardiogram Extraction

Authors: Savita, Anurag Sharma, Harsukhpreet Singh

Abstract:

Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.

Keywords: aECG, ACF, fECG, mECG

Procedia PDF Downloads 409
8156 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 71
8155 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 173
8154 Growth Performance and Nutrient Digestibility of Cirrhinus mrigala Fingerlings Fed on Sunflower Meal Based Diet Supplemented with Phytase

Authors: Syed Makhdoom Hussain, Muhammad Afzal, Farhat Jabeen, Arshad Javid, Tasneem Hameed

Abstract:

A feeding trial was conducted with Cirrhinus mrigala fingerlings to study the effects of microbial phytase with graded levels (0, 500, 1000, 1500, and 2000 FTUkg-1) by sunflower meal based diet on growth performance and nutrient digestibility. The chromic oxide was added as an indigestible marker in the diets. Three replicate groups of 15 fish (Average wt 5.98 g fish-1) were fed once a day and feces were collected twice daily. The results of present study showed improved growth and feed performance of Cirrhinus mrigala fingerlings in response to phytase supplementation. Maximum growth performance was obtained by the fish fed on test diet-III having 1000 FTU kg-1 phytase level. Similarly, nutrient digestibility was also significantly increased (p<0.05) by phytase supplementation. Digestibility coefficients for sunflower meal based diet increased 15.76%, 17.70%, and 12.70% for crude protein, crude fat and apparent gross energy as compared to the reference diet, respectively at 1000 FTU kg-1 level. Again, maximum response of nutrient digestibility was recorded at the phytase level of 1000 FTU kg-1 diet. It was concluded that the phytase supplementation to sunflower meal based diet at 1000 FTU kg-1 level is optimum to release adequate chelated nutrients for maximum growth performance of C. mrigala fingerlings. Our results also suggested that phytase supplementation to sunflower meal based diet can help in the development of sustainable aquaculture by reducing the feed cost and nutrient discharge through feces in the aquatic ecosystem.

Keywords: sunflower meal, Cirrhinus mrigala, growth, nutrient digestibility, phytase

Procedia PDF Downloads 304
8153 Online Allocation and Routing for Blood Delivery in Conditions of Variable and Insufficient Supply: A Case Study in Thailand

Authors: Pornpimol Chaiwuttisak, Honora Smith, Yue Wu

Abstract:

Blood is a perishable product which suffers from physical deterioration with specific fixed shelf life. Although its value during the shelf life is constant, fresh blood is preferred for treatment. However, transportation costs are a major factor to be considered by administrators of Regional Blood Centres (RBCs) which act as blood collection and distribution centres. A trade-off must therefore be reached between transportation costs and short-term holding costs. In this paper we propose a number of algorithms for online allocation and routing of blood supplies, for use in conditions of variable and insufficient blood supply. A case study in northern Thailand provides an application of the allocation and routing policies tested. The plan proposed for daily allocation and distribution of blood supplies consists of two components: firstly, fixed routes are determined for the supply of hospitals which are far from an RBC. Over the planning period of one week, each hospital on the fixed routes is visited once. A robust allocation of blood is made to hospitals on the fixed routes that can be guaranteed on a suitably high percentage of days, despite variable supplies. Secondly, a variable daily route is employed for close-by hospitals, for which more than one visit per week may be needed to fulfil targets. The variable routing takes into account the amount of blood available for each day’s deliveries, which is only known on the morning of delivery. For hospitals on the variables routes, the day and amounts of deliveries cannot be guaranteed but are designed to attain targets over the six-day planning horizon. In the conditions of blood shortage encountered in Thailand, and commonly in other developing countries, it is often the case that hospitals request more blood than is needed, in the knowledge that only a proportion of all requests will be met. Our proposal is for blood supplies to be allocated and distributed to each hospital according to equitable targets based on historical demand data, calculated with regard to expected daily blood supplies. We suggest several policies that could be chosen by the decision makes for the daily distribution of blood. The different policies provide different trade-offs between transportation and holding costs. Variations in the costs of transportation, such as the price of petrol, could make different policies the most beneficial at different times. We present an application of the policies applied to a realistic case study in the RBC at Chiang Mai province which is located in Northern region of Thailand. The analysis includes a total of more than 110 hospitals, with 29 hospitals considered in the variable route. The study is expected to be a pilot for other regions of Thailand. Computational experiments are presented. Concluding remarks include the benefits gained by the online methods and future recommendations.

Keywords: online algorithm, blood distribution, developing country, insufficient blood supply

Procedia PDF Downloads 333
8152 Spatio-Temporal Analysis of Drought in Cholistan Region, Pakistan: An Application of Standardized Precipitation Index

Authors: Qurratulain Safdar

Abstract:

Drought is a temporary aberration in contrast to aridity, as it is a permanent feature of climate. Virtually, it takes place in all types of climatic regions that range from high to low rainfall areas. Due to the wide latitudinal extent of Pakistan, there is seasonal and annual variability in rainfall. The south-central part of the country is arid and hyper-arid. This study focuses on the spatio-temporal analysis of droughts in arid and hyperarid region of Cholistan using the standardized precipitation index (SPI) approach. This study has assessed the extent of recurrences of drought and its temporal vulnerability to drought in Cholistan region. Initially, the paper described the geographic setup of the study area along with a brief description of the drought conditions that prevail in Pakistan. The study also provides a scientific foundation for preparing literature and theoretical framework in-line with the selected parameters and indicators. Data were collected both from primary and secondary data sources. Rainfall and temperature data were obtained from Pakistan Meteorology Department. By applying geostatistical approach, a standardized precipitation index (SPI) was calculated for the study region, and the value of spatio-temporal variability of drought and its severity was explored. As a result, in-depth spatial analysis of drought conditions in Cholistan area was found. Parallel to this, drought-prone areas with seasonal variation were also identified using Kriging spatial interpolation techniques in a GIS environment. The study revealed that there is temporal variation in droughts' occurrences both in time series and SPI values. The paper is finally concluded, and strategic plan was suggested to minimize the impacts of drought.

Keywords: Cholistan desert, climate anomalies, metrological droughts, standardized precipitation index

Procedia PDF Downloads 214
8151 The Effect of Gender Inequality on Reproductive Health in Africa: The Case of Cultural Ghana

Authors: Edna Roseline Dede Tetteh

Abstract:

Reproductive health research and discussions have, over the years, placed a special focus on Africa. This is partly due to the significant relationship between African cultures and reproductive health. Several studies have also acknowledged the economic impact of reproductive health in Africa, because of which reproductive health, particularly family planning, has featured prominently in many economic discussions about Africa. Gender, which is a major element of most African cultures, inspired this study. Given that gender has a significant cultural influence in Africa, the study examined the effect of gender inequality on reproductive health in Africa, with a special focus on Ghana. Specifically, the study examined whether there exists any relationship between gender inequality and reproductive health and, if there is, what the nature and the effect of the relationship are. The study's findings were based on data gathered from 2304 respondents, randomly selected from Ghana's different tribes and ethnic groups. Given that the study was focused on the influence of gender in sexual relationships, the study’s population was people 16 years and above since 16 is the legal age of sexual consent in Ghana. Data was collected through questionnaires and interviews. It was found that the beliefs and practices of the traditional Ghanaian society, like most African societies, have direct and significant impacts on reproductive health. Males in these cultures have more control over reproductive health decisions and choices than females. The study found that it was culturally condemnable for a wife to refuse her husband’s request for sex, even when she is not in the mood for sex, or she is unwell. It was further found that, when it comes to the decision of birth control, males have more power. Consequently, females with reproductive health conditions have no control over choices that support their reproductive health conditions; they must always satisfy their husbands’ sexual needs. Most of the female respondents indicated they had less or no control over protecting themselves from reproductive health risks unless they had the understanding and support of their sexual partners.

Keywords: culture, gender, Ghana, inequality, reproductive health

Procedia PDF Downloads 36
8150 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine

Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park

Abstract:

Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.

Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography

Procedia PDF Downloads 354
8149 The Effect of Austenitization Conditioning on the Mechanical Properties of Cr-Mo-V Hot Work Tool Steel with Different Nitrogen Addition

Authors: Iting Chiang, Cheng-Yu Wei, Chin-Teng Kuo, Po-Sheng Hsu, Yo-Lun Yang, Yung-Chang Kang, Chien-Chon Chen, Chih-Yuan Chen

Abstract:

In recent years, it is reported that microalloying of nitrogen atoms within traditional Cr-Mo-V hot work tool steels can achieve better high temperature mechanical properties, which thus leads to such metallurgical approach widely utilized in the several commercial advanced hot work tool steels. Although the performance of hot work tool steel can be improved better by alloy composition design strategy, the influence of processing parameters on the mechanical property, especially on the service life of hot work tool steel, is still not fully understood yet. A longer service life of hot work tool steel can decrease the manufacturing cost effectively and thus become a research hot spot. According to several previous studies, it is generally acknowledged the service life of hot work tool steels can be increased effectively as the steels possessing higher hardness and toughness due to the formation and propagation of microcracks within the steel can be inhibited effectively. Therefore, in the present research, the designed experiments are primarily to explore the synergistic effect of nitrogen content and austenitization conditioning on the mechanical properties of hot work tool steels has been conducted and analyzed. No matter the nitrogen content, the results indicated the hardness of hot work tool steels increased as the austenitization treatment executed at higher temperature. On the other hand, an optimum toughness of hot work tool steel can be achieved as the austenitization treatment performed at a suitable temperature range. The possible explanation of such metallurgical phenomenon has been also proposed and analyzed in the present research.

Keywords: hot work tool steel, Cr-Mo-V, toughness, hardness, TEM

Procedia PDF Downloads 60
8148 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 463
8147 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment

Authors: Xiaoxian Zhang

Abstract:

Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.

Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis

Procedia PDF Downloads 151
8146 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints

Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar

Abstract:

Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.

Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling

Procedia PDF Downloads 149
8145 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2

Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino

Abstract:

LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.

Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas

Procedia PDF Downloads 263
8144 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment

Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed

Abstract:

Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.

Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge

Procedia PDF Downloads 90
8143 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 135
8142 Solid Angle Approach to Quantify the Shape of Daughter Cavity in Drying Nano Colloidal Sessile Droplets

Authors: Rishabh Hans, Saksham Sharma

Abstract:

Drying of a sessile droplet imbibed with colloidal solution is a complex process in many aspects. Till now, most of the work revolves around; conditions for buckling onset, post-buckling effects, nature of change of droplet shape etc. In this work, we are determining the shape of daughter cavity (DC) formed during post-buckling onset, a less explored stage, and its relationship with experimental parameters. We have introduced solid angle as a special parameter that can quantify the shape of DC at any instant. It facilitates us to compare the shape while experimenting across different substrate types, droplet sizes and particle concentration. Furthermore, the angular location of ‘weak spot’ on the periphery of droplet, which marks the initiation of cavity growth, varies in different conditions. To solve this problem, we have evaluated the deflection angle of weak spots w.r.t. the vertical axis going through the middle of droplet. Subsequently, the solid angle subtended by DC is analyzed about that inclined axis. Finally, results of analysis allude that increasing colloidal concentration has inverse effect on the growth rate of cavity’s shape. Moreover, the cap radius of DC is observed lower for high PLR which makes the capillary pressure higher and thus tougher to expedite cavity formation relatively. This analysis can be helpful in further studies to relate the shape, deflection angle, growth rate of daughter cavity to the type of droplet crust formed in the end. Examining DC stage shall add another layer to nano-colloidal research which aims to influence many industrial applications like patterning, coatings, drug delivery, food processing etc.

Keywords: buckling of sessile droplets, daughter cavity, droplet evaporation, nanoporous shell formation, solid angle

Procedia PDF Downloads 271
8141 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel

Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar

Abstract:

Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.

Keywords: microalgae, organic media, optimization, transesterification, characterization

Procedia PDF Downloads 236
8140 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: camera type weft straightener, structure analysis, control, skew and bow roller

Procedia PDF Downloads 293
8139 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 169
8138 Artificial Intelligence and Personhood: An African Perspective

Authors: Meshandren Naidoo, Amy Gooden

Abstract:

The concept of personhood extending from the moral status of an artificial intelligence system has been explored – but predominantly from a Western conception of personhood. African personhood, however, is distinctly different from Western personhood in that communitarianism is central rather than individualism. Given the decolonization projects happening in Africa, it’s paramount to consider these views. This research demonstrates that the African notion of personhood may extend for an artificial intelligent system where the pre-conditions are met.

Keywords: artificial intelligence, ethics, law, personhood, policy

Procedia PDF Downloads 134
8137 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate

Procedia PDF Downloads 462
8136 Plant Growth and Yield Enhancement of Soybean by Inoculation with Symbiotic and Nonsymbiotic Bacteria

Authors: Timea I. Hajnal-Jafari, Simonida S. Đurić, Dragana R. Stamenov

Abstract:

Microbial inoculants from the group of symbiotic-nitrogen-fixing rhizobia are well known and widely used in production of legumes. On the other hand, nonsymbiotic plant growth promoting rhizobacteria (PGPR) are not commonly used in practice. The objective of this study was to examine the effects of soybean inoculation with symbiotic and nonsymbiotic bacteria on plant growth and seed yield of soybean. Microbiological activity in rhizospheric soil was also determined. The experiment was set up using a randomized block system in filed conditions with the following treatments: control-no inoculation; treatment 1-Bradyrhizobium japonicum; treatment 2-Azotobacter sp.; treatment 3-Bacillus sp..In the flowering stage of growth (FS) the number of nodules per plant (NPP), root length (RL), plant height (PH) and weight (PW) were measured. The number of pod per plant (PPP), number of seeds per pod (SPP) and seed weight per plant (SWP) were recorded at the end of vegetation period (EV). Microbiological analyses of soil included the determination of total number of bacteria (TNB), number of fungi (FNG), actinomycetes (ACT) and azotobacters (AZB) as well as the activity of the dehydrogenase enzyme (DHA). The results showed that bacterial inoculation led to the formation of root nodules regardless of the treatments with statistically no significant difference. Strong nodulation was also present in control treatment. RL and PH were positively influenced by inoculation with Azotobacter sp. and Bacillus sp., respectively. Statistical analyses of the number of PPP, SPP, and SWP showed no significant differences among investigated treatments. High average number of microorganisms were determined in all treatments. Most abundant were TNB (log No 8,010) and ACT (log No 6,055) than FNG and AZB with log No 4,867 and log No 4,025, respectively. The highest DHA activity was measured in the FS of soybean in treatment 3. The application of nonsymbiotic bacteria in soybean production can alleviate initial plant growth and help the plant to better overcome different stress conditions caused by abiotic and biotic factors.

Keywords: bacteria, inoculation, soybean, microbial activity

Procedia PDF Downloads 155
8135 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam

Authors: Nguyen Tien Thanh, Günter Meon

Abstract:

Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.

Keywords: interpolation, precipitation, trend, vietnam

Procedia PDF Downloads 276
8134 Challenges of Management of Acute Pancreatitis in Low Resource Setting

Authors: Md. Shakhawat Hossain, Jimma Hossain, Md. Naushad Ali

Abstract:

Acute pancreatitis is a dangerous medical emergency in the practice of gastroenterology. Management of acute pancreatitis needs multidisciplinary approach with support starts from emergency to ICU. So, there is a chance of mismanagement in every steps, especially in low resource settings. Other factors such as patient’s financial condition, education, social custom, transport facility, referral system from periphery may also challenge the current guidelines for management. The present study is intended to determine the clinico-pathological profile, severity assessment and challenges of management of acute pancreatitis in a government laid tertiary care hospital to image the real scenario of management in a low resource place. A total 100 patients of acute pancreatitis were studied in this prospective study, held in the Department of Gastroenterology, Rangpur medical college hospital, Bangladesh from July 2017 to July 2018 within one year. Regarding severity, 85 % of the patients were mild, whereas 13 were moderately severe, and 2 had severe acute pancreatitis according to the revised Atlanta criteria. The most common etiologies of acute pancreatitis in our study were gall stone (15%) and biliary sludge (15%), whereas 54% were idiopathic. The most common challenges we faced were delay in hospital admission (59%) and delay in hospital diagnosis (20%). Others are non-adherence of patient party, and lack of investigation facility, physician’s poor knowledge about current guidelines. We were able to give early aggressive fluid to only 18% of patients as per current guideline. Conclusion: Management of acute pancreatitis as per guideline is challenging when optimum facility is lacking. So, modified guidelines for assessment and management of acute pancreatitis should be prepared for low resource setting.

Keywords: acute pancreatitis, challenges of management, severity, prognosis

Procedia PDF Downloads 133
8133 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B

Authors: Ceren Karaman, Onur Karaman

Abstract:

The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.

Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification

Procedia PDF Downloads 249
8132 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 547
8131 High-Rise Building with PV Facade

Authors: Jiří Hirš, Jitka Mohelnikova

Abstract:

A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation.

Keywords: buildings, energy, PV façade, solar radiation

Procedia PDF Downloads 310
8130 Joubert Syndrome in Children as Multicentric Screening in Ten Different Places in World

Authors: Bajraktarevic Adnan, Djukic Branka, Sporisevic Lutvo, Krdzalic Zecevic Belma, Uzicanin Sajra, Hadzimuratovic Admir, Hadzimuratovic Hadzipasic Emina, Abduzaimovic Alisa, Kustric Amer, Suljevic Ismet, Serafi Ismail, Tahmiscija Indira, Khatib Hakam, Semic Jusufagic Aida, Haas Helmut, Vladicic Aleksandra, Aplenc Richard, Kadic Deovic Aida

Abstract:

Introduction: Joubert syndrome has an autosomal recessive pattern of inheritance. It is referred as the brain malfunctioning and caused due to the underdevelopment of the cerebellar vermis. Associated conditions involving the eye, the kidney, and ocular disease are well described. Aims: Research helps us better understand this diseases, Joubert syndrome and can lead to advances in diagnosis and treatment. Methods: Different several conditions have been described in which the molar tooth sign and characteristics of Joubert syndrome in ten different places in the world. Carrier testing and diagnosis are available if one of these gene mutations has been identified in an affected family member. Results: Authors have described eleven cases during twenty years of Joubert syndrome. It is a clinically and genetically heterogeneous group of disorders characterized by hypoplasia of the cerebellar vermis with the characteristic neuroradiologic molar tooth sign, and accompanying neurologic symptoms, including dysregulation of breathing pattern and developmental delay. We made confirmation of diagnosis in twin sisters with Joubert syndrome with renal anomalies. Ocular symptoms have existed in seven cases (63.64%) from total eleven. Eleven cases were different sex, five boys (45.45%) and six girls (54.44%). Conclusions: Joubert syndrome is inherited as an autosomal recessive genetic disorder with several features of the disease.

Keywords: Joubert syndrome, cerebellooculorenal syndrome, autosomal recessive genetic disorder (ARGD), children

Procedia PDF Downloads 279
8129 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 101