Search results for: hot work tool steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18409

Search results for: hot work tool steel

18409 The Effect of Austenitization Conditioning on the Mechanical Properties of Cr-Mo-V Hot Work Tool Steel with Different Nitrogen Addition

Authors: Iting Chiang, Cheng-Yu Wei, Chin-Teng Kuo, Po-Sheng Hsu, Yo-Lun Yang, Yung-Chang Kang, Chien-Chon Chen, Chih-Yuan Chen

Abstract:

In recent years, it is reported that microalloying of nitrogen atoms within traditional Cr-Mo-V hot work tool steels can achieve better high temperature mechanical properties, which thus leads to such metallurgical approach widely utilized in the several commercial advanced hot work tool steels. Although the performance of hot work tool steel can be improved better by alloy composition design strategy, the influence of processing parameters on the mechanical property, especially on the service life of hot work tool steel, is still not fully understood yet. A longer service life of hot work tool steel can decrease the manufacturing cost effectively and thus become a research hot spot. According to several previous studies, it is generally acknowledged the service life of hot work tool steels can be increased effectively as the steels possessing higher hardness and toughness due to the formation and propagation of microcracks within the steel can be inhibited effectively. Therefore, in the present research, the designed experiments are primarily to explore the synergistic effect of nitrogen content and austenitization conditioning on the mechanical properties of hot work tool steels has been conducted and analyzed. No matter the nitrogen content, the results indicated the hardness of hot work tool steels increased as the austenitization treatment executed at higher temperature. On the other hand, an optimum toughness of hot work tool steel can be achieved as the austenitization treatment performed at a suitable temperature range. The possible explanation of such metallurgical phenomenon has been also proposed and analyzed in the present research.

Keywords: hot work tool steel, Cr-Mo-V, toughness, hardness, TEM

Procedia PDF Downloads 32
18408 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel

Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury

Abstract:

Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM.

Keywords: EDM, MRR, Ra, TWR

Procedia PDF Downloads 288
18407 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 172
18406 Analyzing Damage of the Cutting Tools out of Carbide Metallic during the Turning of a Soaked and Not Hardened Steel XC38

Authors: Mohamed Seghouani, Ahmed Tafraoui, Soltane Lebaili

Abstract:

The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define it the influence of the elements of the mode of cut on the behavior of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the life span of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as a constraint for the respect of the roughness of the workpiece during a work of series in conventional machining.

Keywords: machining, wear, lifespan, model of Taylor, cutting tool, carburize metal

Procedia PDF Downloads 370
18405 Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel

Authors: Arminder Singh Walia, Vineet Srivastava, Vivek Jain

Abstract:

In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion.

Keywords: discharge current, flushing pressure, pulse-on time, pulse-off time, out of roundness, electrical discharge machining

Procedia PDF Downloads 254
18404 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.

Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic

Procedia PDF Downloads 677
18403 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Authors: Mohammed Tahir, Jonas Lagergren

Abstract:

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Keywords: Vancron 40, cold rolling, adhesive wear, galling, surface finish, lubricant, stainless steel

Procedia PDF Downloads 500
18402 Simulation of Particle Damping in Boring Tool Using Combined Particles

Authors: S. Chockalingam, U. Natarajan, D. M. Santhoshsarang

Abstract:

Particle damping is a promising vibration attenuating technique in boring tool than other type of damping with minimal effect on the strength, rigidity and stiffness ratio of the machine tool structure. Due to the cantilever nature of boring tool holder in operations, it suffers chatter when the slenderness ratio of the tool gets increased. In this study, Copper-Stainless steel (SS) particles were packed inside the boring tool which acts as a damper. Damper suppresses chatter generated during machining and also improves the machining efficiency of the tool with better slenderness ratio. In the first approach of particle damping, combined Cu-SS particles were packed inside the vibrating tool, whereas Copper and Stainless steel particles were selected separately and packed inside another tool and their effectiveness was analysed in this simulation. This study reveals that the efficiency of finite element simulation of the boring tools when equipped with particles such as copper, stainless steel and a combination of both. In this study, the newly modified boring tool holder with particle damping was simulated using ANSYS12.0 with and without particles. The aim of this study is to enhance the structural rigidity through particle damping thus avoiding the occurrence of resonance in the boring tool during machining.

Keywords: boring bar, copper-stainless steel, chatter, particle damping

Procedia PDF Downloads 420
18401 Improvement in Tool Life Through Optimizing Cutting Parameters Using Cryogenic Media in Machining of Aerospace Alloy Steel

Authors: Waseem Tahir, Syed Hussain Imran Jaffery, Mohammad Azam

Abstract:

In this research work, liquid nitrogen gas (LN2) is used as a cryogenic media to optimize the cutting parameters for evaluation of tool flank wear width of Tungsten Carbide Insert (CNMG 120404-WF 4215) while turning a high strength alloy steel. Robust design concept of Taguchi L9 (34) method is applied to determine the optimum conditions. The analysis is revealed that cryogenic impact is more significant in reduction of the tool flank wear. However, High Speed Machining is shown most significant as compare to cooling media on work piece surface roughness.

Keywords: turning, cryogenic cooling, liquid nitrogen, flank wear, surface finish

Procedia PDF Downloads 479
18400 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel

Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan

Abstract:

An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.

Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration

Procedia PDF Downloads 351
18399 Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, (Al, Cr, W)N-coating film, (Al, Cr, W)(C, N)-coating film, sintered steel

Procedia PDF Downloads 348
18398 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools

Authors: Mehmet Erdi Korkmaz, Mustafa Günay

Abstract:

Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.

Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method

Procedia PDF Downloads 337
18397 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform

Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza

Abstract:

The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.

Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform

Procedia PDF Downloads 115
18396 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel

Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki

Abstract:

The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.

Keywords: milling of hardened steel, tool wear, vibrations, machine learning

Procedia PDF Downloads 11
18395 Mechanical Behavior of 16NC6 Steel Hardened by Burnishing

Authors: Litim Tarek, Taamallah Ouahiba

Abstract:

This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing.

Keywords: 16NC6 steel, burnishing, hardening, roughness

Procedia PDF Downloads 129
18394 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi

Abstract:

Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD

Procedia PDF Downloads 38
18393 Active Part of the Burnishing Tool Effect on the Physico-Geometric Aspect of the Superficial Layer of 100C6 and 16NC6 Steels

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

Burnishing is a mechanical surface treatment that combines several beneficial effects on the two steel grades studied. The application of burnishing to the ball or to the tip favors a better roughness compared to turning. In addition, it allows the consolidation of the surface layers through work hardening phenomena. The optimal effects are closely related to the treatment parameters and the active part of the device. With an improvement of 78% on the roughness, burnishing can be defined as a finishing operation in the machining range. With a 44% gain in consolidation rate, this treatment is an effective process for material consolidation. These effects are affected by several factors. The factors V, f, P, r, and i have the most significant effects on both roughness and hardness. Ball or tip burnishing leads to the consolidation of the surface layers of both grades 100C6 and 16NC6 steels by work hardening. For each steel grade and its mechanical treatment, the rational tensile curve has been drawn. Lüdwick's law is used to better plot the work hardening curve. For both grades, a material hardening law is established. For 100C6 steel, these results show a work hardening coefficient and a consolidation rate of 0.513 and 44, respectively, compared to the surface layers processed by turning. When 16NC6 steel is processed, the work hardening coefficient is about 0.29. Hardness tests characterize well the burnished depth. The layer affected by work hardening can reach up to 0.4 mm. Simulation of the tests is of great importance to provide the details at the local scale of the material. Conventional tensile curves provide a satisfactory indication of the toughness of 100C6 and 16NC6 materials. A simulation of the tensile curves revealed good agreement between the experimental and simulation results for both steels.

Keywords: 100C6 steel, 16NC6 steel, burnishing, work hardening, roughness, hardness

Procedia PDF Downloads 136
18392 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 338
18391 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling

Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Shneck, Z.

Abstract:

The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel.

Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer

Procedia PDF Downloads 107
18390 Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel

Authors: K. Digheche, K. Saadi, Z. Boumerzoug

Abstract:

Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction.

Keywords: heat treatments, low carbon steel, microstructures, welding

Procedia PDF Downloads 417
18389 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material

Procedia PDF Downloads 203
18388 Effect of Heating Rate on Microstructural Developments in Cold Heading Quality Steel Used for Automotive Applications

Authors: Shahid Hussain Abro, F. Mufadi, A. Boodi

Abstract:

Microstructural study and phase transformation in steels is a basic and important step during the design of structural steel. There are huge efforts and study has been done so far on phase transformations, due to so many steel grades available commercially the phase development in steel has different consequences. In the present work an effort has been made to study the effect of heating rate on microstructural features of cold heading quality steel. The SEM, optical microscopy, and heat treatment techniques have been applied to observe the microstructural features in the experimental steel. It was observed that heating rate has the strong influence on phase transformation of CHQ steel under investigation. Heating rate increases the austenite formation kinetics with respect to holding time, and this austenite has been transformed to martensite upon cooling. Heating rate also plays a vital role on nucleation sites of austenite formation in the experimental steel.

Keywords: CHQ steel, austenite formation, heating rate, nucleation

Procedia PDF Downloads 373
18387 Aging Effect on Mechanical Behavior of Duplex Stainless Steel

Authors: Jeonho Moon, Tae Kwon Ha

Abstract:

In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0 C, 0.2 Mn, 3.8 Cr, 1.5 W, 8.5 Co, 9.2 Mo, and 1.0 V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3wt.% were cast into ingots of 140 mm x 140 mm x 330 mm by vacuum induction melting. After solution treatment at 1150 °C for 1.5 hr followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.

Keywords: duplex stainless steel, alloying elements, eutectic carbides, microstructure, hot workability

Procedia PDF Downloads 386
18386 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 steel, orthogonal array, optimization, surface roughness, Taguchi methodology

Procedia PDF Downloads 518
18385 Behavior of Double Skin Circular Tubular Steel-Concrete-Composite Column

Authors: Usha Sivasankaran, Seetha Raman

Abstract:

Experimental work on Double skin Concrete Filled tubes (DSCFT) are a variation of CFT (Concrete- filled steel tubular) with a hollow core formed by two concentric steel tubes in – filled with concrete. Six Specimens with three different volume fractions of steel fibres are cast and tested. Experiments on circular steel tubes in – filled with steel fibre reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibres to the load bearing capacity of Short Composite Columns. The main Variable considered in the test study is the percentage of steel fibres added to the in –filled concrete. All the specimens were tested under axial compression until failure state realisation. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under Study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying capacity.

Keywords: composite columns, optimization of steel, double skin, DSCFT

Procedia PDF Downloads 514
18384 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 255
18383 Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel

Authors: J. Ptačinová, J. Ďurica, P. Jurči, M Kusý

Abstract:

Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak.

Keywords: microstructure, Vanadis 6 tool steel, sub-zero treatment, carbides

Procedia PDF Downloads 138
18382 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre

Authors: Mohammed Mashrei

Abstract:

Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.

Keywords: ferrocement, fibre, silica fume, slab, strength

Procedia PDF Downloads 198
18381 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 264
18380 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining

Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh

Abstract:

In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.

Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining

Procedia PDF Downloads 299