Search results for: intergenerational technology learning
10633 Practice Educators' Perspective: Placement Challenges in Social Work Education in England
Authors: Yuet Wah Echo Yeung
Abstract:
Practice learning is an important component of social work education. Practice educators are charged with the responsibility to support and enable learning while students are on placement. They also play a key role in teaching students to integrate theory and practice, as well as assessing their performance. Current literature highlights the structural factors that make it difficult for practice educators to create a positive learning environment for students. Practice educators find it difficult to give sufficient attention to their students because of the lack of workload relief, the increasing emphasis on managerialism and bureaucratisation, and a range of competing organisational and professional demands. This paper reports the challenges practice educators face and how they manage these challenges in this context. Semi-structured face-to-face interviews were conducted with thirteen practice educators who support students in statutory and voluntary social care settings in the Northwest of England. Interviews were conducted between April and July 2017 and each interview lasted about 40 minutes. All interviews were recorded and transcribed. All practice educators are experienced social work practitioners with practice experience ranging from 6 to 42 years. On average they have acted as practice educators for 13 years and all together have supported 386 students. Our findings reveal that apart from the structural factors that impact how practice educators perform their roles, they also faced other challenges when supporting students on placement. They include difficulty in engaging resistant students, complexity in managing power dynamics in the context of practice learning, and managing the dilemmas of fostering a positive relationship with students whilst giving critical feedback. Suggestions to enhance the practice educators’ role include support from organisations and social work teams; effective communication with university tutors, and a forum for practice educators to share good practice and discuss placement issues.Keywords: social work education, placement challenges, practice educator, practice learning
Procedia PDF Downloads 19110632 Benefits of Automobile Electronic Technology in the Logistics Industry in Third World Countries
Authors: Jonathan Matyenyika
Abstract:
In recent years, automobile manufacturers have increasingly produced vehicles equipped with cutting-edge automotive electronic technology to match the fast-paced digital world of today; this has brought about various benefits in different business sectors that make use of these vehicles as a means of turning over a profit. In the logistics industry, vehicles equipped with this technology have proved to be very utilitarian; this paper focuses on the benefits automobile electronic equipped vehicles have in the logistics industry. Automotive vehicle manufacturers have introduced new technological electronic features to their vehicles to enhance and improve the overall performance, efficiency, safety and driver comfort. Some of these features have proved to be beneficial to logistics operators. To start with the introduction of adaptive cruise control in long-distance haulage vehicles, to see how this system benefits the drivers, we carried out research in the form of interviews with long-distance truck drivers with the main question being, what major difference have they experienced since they started to operate vehicles equipped with this technology to which most stated they had noticed that they are less tired and are able to drive longer distances as compared to when they used vehicles not equipped with this system. As a result, they can deliver faster and take on the next assignment, thus improving efficiency and bringing in more monetary return for the logistics company. Secondly, the introduction of electric hybrid technology, this system allows the vehicle to be propelled by electric power stored in batteries located in the vehicle instead of fossil fuel. Consequently, this benefits the logistic company as vehicles become cheaper to run as electricity is more affordable as compared to fossil fuel. The merging of electronic systems in vehicles has proved to be of great benefit, as my research proves that this can benefit the logistics industry in plenty of ways.Keywords: logistics, manufacturing, hybrid technology, haulage vehicles
Procedia PDF Downloads 5710631 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry
Procedia PDF Downloads 2110630 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience
Authors: Ayomide Oyedele
Abstract:
In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses
Procedia PDF Downloads 8410629 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 5810628 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education
Authors: Olga Guseynova
Abstract:
Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory
Procedia PDF Downloads 30510627 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things
Authors: Liang Zhao, Guangwen Wang, Guichang Liu
Abstract:
Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring
Procedia PDF Downloads 14710626 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon
Authors: Alex Ellery
Abstract:
Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering
Procedia PDF Downloads 42310625 Benefits of Collegial Teaming to Improve Knowledge-Worker Productivity
Authors: Prakash Singh, Piet Maphodisa Kgohlo
Abstract:
Knowledge-worker productivity is one of the biggest leadership challenges facing all organizations in the twenty-first century. It cannot be denied that knowledge-worker productivity affects all organizations. The work and the workforce are both undergoing greater changes currently than at any time, since the beginning of the industrial revolution two centuries ago. Employees welcome collegial teaming (CT) as an innovative way to develop their work-integrated learning competencies. Human resource development policies must evoke the symbiotic relationship between CT and work-integrated learning, seeing that employees need to be endowed with the competence to move from one skill to another, as each one becomes obsolete, and to simultaneously develop their cognitive and emotional intelligence. The outcome of this relationship must culminate in the development of highly productive knowledge-workers. While this study focuses on teachers, the conceptual framework and the findings of this research can be beneficial for any organization, public or private sector, business or non-business. Therefore, in this quantitative study, the benefits of CT are considered in developing human resources to sustain knowledge-worker productivity. The ANOVA p-values reveal that the majority of teachers agree that CT can empower them to overcome the challenges of managing curriculum change. CT can equip them with continuous and sustained learning, growth and improvement, necessary for knowledge-worker productivity. This study, therefore, confirms that CT benefits all workers, immaterial of their age, gender or experience. Hence, this exploratory research provides a new perspective of CT in addressing knowledge-worker productivity when organizational change alters the vision of the organization.Keywords: collegial teaming, human resource development, knowledge-worker productivity, work-integrated learning
Procedia PDF Downloads 27710624 Driven Force of Integrated Reporting in Thailand
Authors: Nuttha Kirdsinsap, Watchaneeporn Setthasakko
Abstract:
This paper aims to gain opinions and perspectives of Certified Public Accountants (CPA) in Thailand regarding the driven force of Integrated Reporting. It employs in-depth interviews with CPA from different big 4 audits firms in Thailand, including PWC, Ernst and Young, Deloitte, and KPMG. It is found that the driven force of Integrated Reporting made CPA in Thailand awaken to the big change that is coming in the future, and it is said to be another big learning and integrating period between certified public accountants and other professionals (for example, engineers, environmentalists and lawyers), which, certified public accountants in Thailand will have to push themselves so hard to catch up.Keywords: integrated reporting, learning, knowledge, certified public accountants, Thailand
Procedia PDF Downloads 27010623 Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil
Authors: Ali H. Mahfouz, Gao Ming-Jun, Mohamad Sharif
Abstract:
Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas.Keywords: super soft foundation, dredger fill, vacuum preloading, foundation treatment, construction technology
Procedia PDF Downloads 60910622 Digital Survey to Detect Factors That Determine Successful Implementation of Cooperative Learning in Physical Education
Authors: Carolin Schulze
Abstract:
Characterized by a positive interdependence of learners, cooperative learning (CL) is one possibility of successfully dealing with the increasing heterogeneity of students. Various positive effects of CL on the mental, physical and social health of students have already been documented. However, this structure is still rarely used in physical education (PE). Moreover, there is a lack of information about factors that determine the successful implementation of CL in PE. Therefore, the objective of the current study was to find out factors that determine the successful implementation of CL in PE using a digital questionnaire that was conducted from November to December 2022. In addition to socio-demographic data (age, gender, teaching experience, and education level), frequency of using CL, implementation strategies (theory-led, student-centred), and positive and negative effects of CL were measured. Furthermore, teachers were asked to rate the success of implementation on a 6-point rating scale (1-very successful to 6-not successful at all). For statistical analysis, multiple linear regression was performed, setting the success of implementation as the dependent variable. A total of 224 teachers (mean age=44.81±10.60 years; 58% male) took part in the current study. Overall, 39% of participants stated that they never use CL in their PE classes. Main reasons against the implementations of CL in PE were no time for preparation (74%) or for implementation (61%) and high heterogeneity of students (55%). When using CL, most of the reported difficulties are related to uncertainties about the correct procedure (54%) and the heterogeneous performance of students (54%). The most frequently mentioned positive effect was increased motivation of students (42%) followed by an improvement of psychological abilities (e.g. self-esteem, self-concept; 36%) and improved class cohesion (31%). Reported negative effects were unpredictability (29%), restlessness (24%), confusion (24%), and conflicts between students (17%). The successful use of CL is related to a theory-based preparation (e.g., heterogeneous formation of groups, use of rules and rituals) and a flexible implementation tailored to the needs and conditions of students (e.g., the possibility of individual work, omission of CL phases). Compared to teachers who solely implemented CL theory-led or student-adapted, teachers who switched from theory-led preparation to student-centred implementation of CL reported more successful implementation (t=5.312; p<.001). Neither frequency of using CL in PE nor the gender, age, the teaching experience, or the education level of the teacher showed a significant connection with the successful use of CL. Corresponding to the results of the current study, it is advisable that teachers gather enough knowledge about CL during their education and to point out the need to adapt the learning structure according to the diversity of their students. In order to analyse implementation strategies of teachers more deeply, qualitative methods and guided interviews with teachers are needed.Keywords: diversity, educational technology, physical education, teaching styles
Procedia PDF Downloads 8110621 Leading, Teaching and Learning “in the Middle”: Experiences, Beliefs, and Values of Instructional Leaders, Teachers, and Students in Finland, Germany, and Canada
Authors: Brandy Yee, Dianne Yee
Abstract:
Through the exploration of the lived experiences, beliefs and values of instructional leaders, teachers and students in Finland, Germany and Canada, we investigated the factors which contribute to developmentally responsive, intellectually engaging middle-level learning environments for early adolescents. Student-centred leadership dimensions, effective instructional practices and student agency were examined through the lens of current policy and research on middle-level learning environments emerging from the Canadian province of Manitoba. Consideration of these three research perspectives in the context of early adolescent learning, placed against an international backdrop, provided a previously undocumented perspective on leading, teaching and learning in the middle years. Aligning with a social constructivist, qualitative research paradigm, the study incorporated collective case study methodology, along with constructivist grounded theory methods of data analysis. Data were collected through semi-structured individual and focus group interviews and document review, as well as direct and participant observation. Three case study narratives were developed to share the rich stories of study participants, who had been selected using maximum variation and intensity sampling techniques. Interview transcript data were coded using processes from constructivist grounded theory. A cross-case analysis yielded a conceptual framework highlighting key factors that were found to be significant in the establishment of developmentally responsive, intellectually engaging middle-level learning environments. Seven core categories emerged from the cross-case analysis as common to all three countries. Within the visual conceptual framework (which depicts the interconnected nature of leading, teaching and learning in middle-level learning environments), these seven core categories were grouped into Essential Factors (student agency, voice and choice), Contextual Factors (instructional practices; school culture; engaging families and the community), Synergistic Factors (instructional leadership) and Cornerstone Factors (education as a fundamental cultural value; preservice, in-service and ongoing teacher development). In addition, sub-factors emerged from recurring codes in the data and identified specific characteristics and actions found in developmentally responsive, intellectually engaging middle-level learning environments. Although this study focused on 12 schools in Finland, Germany and Canada, it informs the practice of educators working with early adolescent learners in middle-level learning environments internationally. The authentic voices of early adolescent learners are the most important resource educators have to gauge if they are creating effective learning environments for their students. Ongoing professional dialogue and learning is essential to ensure teachers are supported in their work and develop the pedagogical practices needed to meet the needs of early adolescent learners. It is critical to balance consistency, coherence and dependability in the school environment with the necessary flexibility in order to support the unique learning needs of early adolescents. Educators must intentionally create a school culture that unites teachers, students and their families in support of a common purpose, as well as nurture positive relationships between the school and its community. A large, urban school district in Canada has implemented a school cohort-based model to begin to bring developmentally responsive, intellectually engaging middle-level learning environments to scale.Keywords: developmentally responsive learning environments, early adolescents, middle level learning, middle years, instructional leadership, instructional practices, intellectually engaging learning environments, leadership dimensions, student agency
Procedia PDF Downloads 30410620 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 11210619 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 19610618 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 15510617 Profit Efficiency and Technology Adoption of Boro Rice Production in Bangladesh
Authors: Fazlul Hoque, Tahmina Akter Joya, Asma Akter, Supawat Rungsuriyawiboon
Abstract:
Rice is the staple food in Bangladesh, and therefore, self-sufficiency in rice production remains a major concern. However, Bangladesh is experiencing insufficiency in rice production due to high production cost and low national average productivity of 2.848 ton/ha in comparison to other rice-growing countries in the world. This study aims to find out the profit efficiency and determinants of profit efficiency in Boro rice cultivation in Manikganj and Dhaka districts of Bangladesh. It also focuses on technology adoption and effect of technology adoption on profit efficiency of Boro rice cultivation in Bangladesh. The data were collected from 300 households growing Boro rice through face to face interviews by one set structured questionnaire; Frontier Version 4.1 and STATA 15 software were employed to analyze the data according to the purpose of the study. Maximum likelihood estimates of the specified profit model showed that profit efficiency of the farmer varied between 23% and 97% with a mean of 76% which implied as 24% of the profit is lost due to a combination of technical and allocative inefficiencies in Boro rice cultivation in the study area. The inefficiency model revealed that the education level of the farmer, farm size, variety of seed, and training and extension service influence the profit inefficiency significantly. The study also explained that the level of technology adoption index affects profit efficiency. The technology adoption in Boro rice cultivation is influenced by the education level of the farmer, farm size and farm capital.Keywords: farmer, maximum likelihood estimation, profit efficiency, rice
Procedia PDF Downloads 13510616 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 6910615 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 25410614 The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces
Authors: Michael Lekan-Kehinde, Abimbola Asojo, Bonnie Sanborn
Abstract:
Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students.Keywords: acoustics, autism spectrum disorder (ASD), children, education, learning, learning spaces, materials, neurodiversity, sound
Procedia PDF Downloads 10710613 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 20710612 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 4010611 Training for Search and Rescue Teams: Online Training for SAR Teams to Locate Lost Persons with Dementia Using Drones
Authors: Dalia Hanna, Alexander Ferworn
Abstract:
This research provides detailed proposed training modules for the public safety teams and, specifically, SAR teams responsible for search and rescue operations related to finding lost persons with dementia. Finding a lost person alive is the goal of this training. Time matters if a lost person is to be found alive. Finding lost people living with dementia is quite challenging, as they are unaware they are lost and will not seek help. Even a small contribution to SAR operations could contribute to saving a life. SAR operations will always require expert professional and human volunteers. However, we can reduce their time, save lives, and reduce costs by providing practical training that is based on real-life scenarios. The content for the proposed training is based on the research work done by the researcher in this area. This research has demonstrated that, based on utilizing drones, the algorithmic approach could support a successful search outcome. Understanding the behavior of the lost person, learning where they may be found, predicting their survivability, and automating the search are all contributions of this work, founded in theory and demonstrated in practice. In crisis management, human behavior constitutes a vital aspect in responding to the crisis; the speed and efficiency of the response often get affected by the difficulty of the context of the operation. Therefore, training in this area plays a significant role in preparing the crisis manager to manage the emotional aspects that lead to decision-making in these critical situations. Since it is crucial to gain high-level strategic choices and the ability to apply crisis management procedures, simulation exercises become central in training crisis managers to gain the needed skills to respond critically to these events. The training will enhance the responders’ ability to make decisions and anticipate possible consequences of their actions through flexible and revolutionary reasoning in responding to the crisis efficiently and quickly. As adult learners, search and rescue teams will be approaching training and learning by taking responsibility of the learning process, appreciate flexible learning and as contributors to the teaching and learning happening during that training. These are all characteristics of adult learning theories. The learner self-reflects, gathers information, collaborates with others and is self-directed. One of the learning strategies associated with adult learning is effective elaboration. It helps learners to remember information in the long term and use it in situations where it might be appropriate. It is also a strategy that can be taught easily and used with learners of different ages. Designers must design reflective activities to improve the student’s intrapersonal awareness.Keywords: training, OER, dementia, drones, search and rescue, adult learning, UDL, instructional design
Procedia PDF Downloads 10810610 An Appraisal of the Design, Content, Approaches and Materials of the K-12 Grade 8 English Curriculum by Language Teachers, Supervisors and Teacher-Trainers
Authors: G. Infante Dennis, S. Balinas Elvira, C. Valencia Yolanda, Cunanan
Abstract:
This paper examined the feed-backs, concerns, and insights of the teachers, supervisors, and teacher-trainers on the nature and qualities of the K-12 grade 8 design, content, approaches, and materials. Specifically, it sought to achieve the following objectives: 1) to describe the critical nature and qualities of the design, content, teaching-learning-and-evaluation approaches, and the materials to be utilized in the implementation of the grade 8 curriculum; 2) to extract the possible challenges relevant to the implementation of the design, content, teaching-learning-and-evaluation approaches, and the materials of the grade 8 curriculum in terms of the linguistic and technical competence of the teachers, readiness to implement, willingness to implement, and capability to make relevant adaptations; 3) to present essential demands on the successful and meaningful implementation of the grade 8 curriculum in terms of teacher-related factors, school-related factors, and student-related concerns.Keywords: curriculum reforms, K-12, teacher-training, language teaching, learning
Procedia PDF Downloads 25410609 Infrastructure Development – Stages in Development
Authors: Seppo Sirkemaa
Abstract:
Information systems infrastructure is the basis of business systems and processes in the company. It should be a reliable platform for business processes and activities but also have the flexibility to change business needs. The development of an infrastructure that is robust, reliable, and flexible is a challenge. Understanding technological capabilities and business needs is a key element in the development of successful information systems infrastructure.Keywords: development, information technology, networks, technology
Procedia PDF Downloads 12010608 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 52110607 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time
Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen
Abstract:
Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.Keywords: 4C/ID model, virtual patients, education, dental, instructional design
Procedia PDF Downloads 8010606 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 1610605 The Mediating Role of Masculine Gender Role Stress on the Relationship between the EFL learners’ Self-Disclosure and English Class Anxiety
Authors: Muhammed Kök & Adem Kantar
Abstract:
Learning a foreign language can be affected by various factors such as age, aptitude, motivation, L2 disposition, etc. Among these factors, masculine gender roles stress (MGRS) that male learners possess is the least touched area that has been examined so far.MGRS can be defined as the traditional male role stress when the male learners feel the masculinity threat against their traditionally adopted masculinity norms. Traditional masculine norms include toughness, accuracy, completeness, and faultlessness. From this perspective, these norms are diametrically opposed to the language learning process since learning a language, by its nature, involves stages such as making mistakes and errors, not recalling words, pronouncing sounds incorrectly, creating wrong sentences, etc. Considering the potential impact of MGRS on the language learning process, the main purpose of this study is to investigate the mediating role of MGRS on the relationship between the EFL learners’ self-disclosure and English class anxiety. Data were collected from Turkish EFL learners (N=282) who study different majors in various state universities across Turkey. Data were analyzed by means of the Bootstraping method using the SPSS Process Macro plugin. The findings show that the indirect effect of self-disclosure level on the English Class Anxiety via MGRS was significant. We conclude that one of the reasons why Turkish EFL learners have English class anxiety might be the pressure that they feel because of their traditional gender role stress.Keywords: masculine, gender role stress, english class anxiety, self-disclosure, masculinity norms
Procedia PDF Downloads 9810604 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 264