Search results for: WSN (wireless sensor networks)
1235 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network
Authors: Manverpreet Kaur, Amarpreet Singh
Abstract:
The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)
Procedia PDF Downloads 2471234 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities
Procedia PDF Downloads 2451233 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1341232 Transfer of Information Heritage between Algerian Veterinarians and Breeders: Assessment of Information and Communication Technology Using Mobile Phone
Authors: R. Bernaoui, P. Ohly
Abstract:
Our research shows the use of the mobile phone that consolidates the relationship between veterinarians, and that between breeders and veterinarians. On the other hand it asserts that the tool in question is a means of economic development. The results of our survey reveal a positive return to the veterinary community, which shows that the mobile phone has become an effective means of sustainable development through the transfer of a rapid and punctual information inheritance via social networks; including many Internet applications. Our results show that almost all veterinarians use the mobile phone for interprofessional communication. We therefore believe that the use of the mobile phone by livestock operators has greatly improved the working conditions, just as the use of this tool contributes to a better management of the exploitation as long as it allows limit travel but also save time. These results show that we are witnessing a growth in the use of mobile telephony technologies that impact is as much in terms of sustainable development. Allowing access to information, especially technical information, the mobile phone, and Information and Communication of Technology (ICT) in general, give livestock sector players not only security, by limiting losses, but also an efficiency that allows them a better production and productivity.Keywords: algeria, breeder-veterinarian, digital heritage, networking
Procedia PDF Downloads 1211231 Sensing of Cancer DNA Using Resonance Frequency
Authors: Sungsoo Na, Chanho Park
Abstract:
Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer
Procedia PDF Downloads 2331230 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1381229 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 2721228 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling
Procedia PDF Downloads 4251227 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation
Authors: Fazia Rahmoune, Sofiane Ziani
Abstract:
Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis
Procedia PDF Downloads 1871226 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 901225 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction
Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui
Abstract:
Technological advances in the construction sector are helping to make smart cities a reality by means of cyber-physical systems (CPS). CPS integrate information and the physical world through the use of information communication technologies (ICT). An increasingly common goal in the built environment is to integrate building information models (BIM) with the Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation, and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts, and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) how suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) what are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities, and cybersecurity. The results of these findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.Keywords: BIM, cybersecurity, digital twins, IoT, urban cities
Procedia PDF Downloads 1691224 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2741223 Dynamics of the Coupled Fitzhugh-Rinzel Neurons
Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay
Abstract:
Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks
Procedia PDF Downloads 1281222 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India
Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya
Abstract:
Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that Social Connections were significantly during COVID-19 in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.Keywords: social networks, relationship maintenance, relationship satisfaction, COVID-19
Procedia PDF Downloads 1621221 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 921220 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1151219 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 2451218 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 1691217 Derivatives Balance Method for Linear and Nonlinear Control Systems
Authors: Musaab Mohammed Ahmed Ali, Vladimir Vodichev
Abstract:
work deals with an universal control technique or single controller for linear and nonlinear stabilization and tracing control systems. These systems may be structured as SISO and MIMO. Parameters of controlled plants can vary over a wide range. Introduced a novel control systems design method, construction of stable platform orbits using derivative balance, solved transfer function stability preservation problem of linear system under partial substitution of a rational function. Universal controller is proposed as a polar system with the multiple orbits to simplify design procedure, where each orbit represent single order of controller transfer function. Designed controller consist of proportional, integral, derivative terms and multiple feedback and feedforward loops. The controller parameters synthesis method is presented. In generally, controller parameters depend on new polynomial equation where all parameters have a relationship with each other and have fixed values without requirements of retuning. The simulation results show that the proposed universal controller can stabilize infinity number of linear and nonlinear plants and shaping desired previously ordered performance. It has been proven that sensor errors and poor performance will be completely compensated and cannot affect system performance. Disturbances and noises effect on the controller loop will be fully rejected. Technical and economic effect of using proposed controller has been investigated and compared to adaptive, predictive, and robust controllers. The economic analysis shows the advantage of single controller with fixed parameters to drive infinity numbers of plants compared to above mentioned control techniques.Keywords: derivative balance, fixed parameters, stable platform, universal control
Procedia PDF Downloads 1361216 Female Entrepreneurship in the Creative Industry: The Antecedents of Their Ventures' Performance
Authors: Naoum Mylonas, Eugenia Petridou
Abstract:
Objectives: The objectives of this research are firstly, to develop an integrated model of predicting factors to new ventures performance, taking into account certain issues and specificities related to creative industry and female entrepreneurship based on the prior research; secondly, to determine the appropriate measures of venture performance in a creative industry context, drawing upon previous surveys; thirdly, to illustrate the importance of entrepreneurial orientation, networking ties, environment dynamism and access to financial capital on new ventures performance. Prior Work: An extant review of the creative industry literature highlights the special nature of entrepreneurship in this field. Entrepreneurs in creative industry share certain specific characteristics and intensions, such as to produce something aesthetic, to enrich their talents and their creativity, and to combine their entrepreneurial with their artistic orientation. Thus, assessing venture performance and success in creative industry entails an examination of how creative people or artists conceptualize success. Moreover, female entrepreneurs manifest more positive attitudes towards sectors primarily based on creativity, rather than innovation in which males outbalance. As creative industry entrepreneurship based mainly on the creative personality of the creator / artist, a high interest is accrued to examine female entrepreneurship in the creative industry. Hypotheses development: H1a: Female entrepreneurs who are more entrepreneurially-oriented show a higher financial performance. H1b: Female entrepreneurs who are more artistically-oriented show a higher creative performance. H2: Female entrepreneurs who have personality that is more creative perform better. H3: Female entrepreneurs who participate in or belong to networks perform better. H4: Female entrepreneurs who have been consulted by a mentor perform better. Η5a: Female entrepreneurs who are motivated more by pull-factors perform better. H5b: Female entrepreneurs who are motivated more by push-factors perform worse. Approach: A mixed method triangulation design has been adopted for the collection and analysis of data. The data are collected through a structured questionnaire for the quantitative part and through semi-structured interviews for the qualitative part as well. The sample is 293 Greek female entrepreneurs in the creative industry. Main findings: All research hypotheses are accepted. The majority of creative industry entrepreneurs evaluate themselves in creative performance terms rather than financial ones. The individuals who are closely related to traditional arts sectors have no EO but also evaluate themselves highly in terms of venture performance. Creative personality of creators is appeared as the most important predictor of venture performance. Pull factors in accordance with our hypothesis lead to higher levels of performance compared to push factors. Networking and mentoring are viewed as very important, particularly now during the turbulent economic environment in Greece. Implications-Value: Our research provides an integrated model with several moderating variables to predict ventures performance in the creative industry, taking also into account the complicated nature of arts and the way artists and creators define success. At the end, the findings may be used for the appropriate design of educational programs in creative industry entrepreneurship. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.Keywords: venture performance, female entrepreneurship, creative industry, networks
Procedia PDF Downloads 2621215 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 701214 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito
Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar
Abstract:
The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes
Procedia PDF Downloads 2391213 Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes
Authors: Mthiyane Pretty, Mitsui Toshiake, Nagano Hirohiko, Aycan Murat
Abstract:
Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄.Keywords: greenhouse gases, methane, morphological characterization, alternating wetting and drying
Procedia PDF Downloads 801212 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1251211 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains
Authors: Yohanes Kristianto
Abstract:
The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy
Procedia PDF Downloads 1501210 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing
Authors: Jaimin Patel
Abstract:
Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack
Procedia PDF Downloads 2801209 The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park
Authors: Honey Fadaie, Vahid Parhoodeh
Abstract:
This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented.Keywords: Jamshidieh park, Persian garden, sustainable landscape, urban green space
Procedia PDF Downloads 4751208 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4421207 Tourism Challenges and Prospects: The Nigerian Experience: A Case Study of Benin City
Authors: Olawale-Olakunle Olajumoke Elizabeth
Abstract:
There are many challenges which are been encountered in the area of tourism in Nigeria. This research work on Tourism Challenges and Prospects: The Nigerian Experience with a case study of Benin City, was carried out so as to identify the various challenges. Questionnaires were designed and administered in the various locations of Benin City, using the designed objectives and hypothesis. Use is made of both primary and secondary data collections, to gather information. The obtained data were subjected to statistical analysis where results were obtained for discussion. The results obtained showed that Tourism in the area is grossly affected by factors such as lack of preferred destination, lack of consistency in policy, erratic power-supply, bad road networks, insecurity in the city and perennial conflicts, no enabling environment for investors or tourists among others. It was revealed that touristic activities in the area are at low level due to economic hardship and this is rubbing the city of its contribution to the national economy. It is however recommended that the government should create an enabling environment for both investors and tourists, as this will fasten the development of tourism in the city.Keywords: destination, network, tourists and investors, Nigeria, industry
Procedia PDF Downloads 3861206 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 372