Search results for: optical and thermal evaluations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5422

Search results for: optical and thermal evaluations

2362 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 49
2361 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System

Authors: Fathi Abubrig, Mohamed Delfag, Suad Abuzariba

Abstract:

The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.

Keywords: crystal field, Ising system, ferromagnetic, magnetization, phase diagrams

Procedia PDF Downloads 475
2360 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 173
2359 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 401
2358 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter

Authors: Zhu Xinxin, Wang Hui, Yang Kai

Abstract:

Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.

Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter

Procedia PDF Downloads 112
2357 Effect of Aryl Imidazolium Ionic Liquids as Asphaltene Dispersants

Authors: Raghda Ahmed El-Nagar

Abstract:

Oil spills are one of the most serious environmental issues that have occurred during the production and transportation of petroleum crude oil. Chemical asphaltene dispersants are hazardous to the marine environment, so Ionic liquids (ILs) as asphaltene dispersants are a critical area of study. In this work, different aryl imidazolium ionic liquids were synthesized with high yield and elucidated via tools of analysis (Elemental analysis, FT-IR, and 1H-NMR). Thermogravimetric analysis confirmed that the prepared ILs posses high thermal stability. The critical micelle concentration (CMC), surface tension, and emulsification index were investigated. Evaluation of synthesized ILs as asphaltene dispersants were assessed at various concentrations, and data reveals high dispersion efficiency.

Keywords: ionic liquids, oil spill, asphaltene dispersants, CMC, efficiency

Procedia PDF Downloads 180
2356 Spectroscopic Characterization Approach to Study Ablation Time on Zinc Oxide Nanoparticles Synthesis by Laser Ablation Technique

Authors: Suha I. Al-Nassar, K. M. Adel, F. Zainab

Abstract:

This work was devoted for producing ZnO nanoparticles by pulsed laser ablation (PLA) of Zn metal plate in the aqueous environment of cetyl trimethyl ammonium bromide (CTAB) using Q-Switched Nd:YAG pulsed laser with wavelength= 1064 nm, Rep. rate= 10 Hz, Pulse duration= 6 ns and laser energy 50 mJ. Solution of nanoparticles is found stable in the colloidal form for a long time. The effect of ablation time on the optical and structure of ZnO was studied is characterized by UV-visible absorption. UV-visible absorption spectrum has four peaks at 256, 259, 265, 322 nm for ablation time (5, 10, 15, and 20 sec) respectively, our results show that UV–vis spectra show a blue shift in the presence of CTAB with decrease the ablation time and blue shift indicated to get smaller size of nanoparticles. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. Also, FTIR transmittance spectra of ZnO2 nanoparticles prepared in these states show a characteristic ZnO absorption at 435–445cm^−1.

Keywords: zinc oxide nanoparticles, CTAB solution, pulsed laser ablation technique, spectroscopic characterization

Procedia PDF Downloads 367
2355 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 145
2354 Development of Sb/MWCNT Free Standing Anode for Li-Ion Batteries

Authors: Indu Elizabeth

Abstract:

Antimony/Multi Walled Carbon nano tube nanocomposite (Sb/MWCNT) is synthesized using ethylene glycol mediated reduction process. Binder free, self-supporting and flexible Sb/MWCNT nanocomposite paper has been prepared by employing the vacuum filtration technique. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS), and thermal gravimetric analysis (TGA) to evaluate the structure of anode and tested for its performance in a Lithium rechargeable cell. Electrochemical measurements demonstrate that the Sb/MWCNT composite paper anode delivers a specific discharge capacity of ~400 mAh g-1 up to a current density of 100 mA g-1.

Keywords: antimony, lithium ion battery, multiwalled carbon nanotube, specific capacity

Procedia PDF Downloads 395
2353 Preparation and Characterizations of Natural Material Based Ceramic Membranes

Authors: In-Hyuck Song, Jang-Hoon Ha

Abstract:

Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.

Keywords: ceramic membrane, diatomite, water treatment, sintering

Procedia PDF Downloads 504
2352 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers

Authors: Clare Cunningham

Abstract:

Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.

Keywords: academic writing, students, undergraduates, writing retreat

Procedia PDF Downloads 188
2351 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 434
2350 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature

Procedia PDF Downloads 418
2349 NiO-CeO2 Nano-Catalyst for the Removal of Priority Organic Pollutants from Wastewater through Catalytic Wet Air Oxidation at Mild Conditions

Authors: Anushree, Chhaya Sharma, Satish Kumar

Abstract:

Catalytic wet air oxidation (CWAO) is normally carried out at elevated temperature and pressure. This work investigates the potential of NiO-CeO2 nano-catalyst in CWAO of paper industry wastewater under milder operating conditions of 90 °C and 1 atm. The NiO-CeO2 nano-catalysts were synthesized by a simple co-precipitation method and characterized by X-ray diffraction (XRD), before and after use, in order to study any crystallographic change during experiment. The extent of metal-leaching from the catalyst was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES). The catalytic activity of nano-catalysts was studied in terms of total organic carbon (TOC), adsorbable organic halides (AOX) and chlorophenolics (CHPs) removal. Interestingly, mixed oxide catalysts exhibited higher activity than the corresponding single-metal oxides. The maximum removal efficiency was achieved with Ce40Ni60 catalyst. The results indicate that the CWAO process is efficient in removing the priority organic pollutants from wastewater, as it exhibited up to 59% TOC, 55% AOX, and 54 % CHPs removal.

Keywords: catalysis, nano-materials, NiO-CeO2, paper mill, wastewater, wet air oxidation

Procedia PDF Downloads 245
2348 Relationships between Motor Skills and Self-Perceived Athletic Competence in a Sample of Primary School Children

Authors: Cristina-Corina Bențea, Teodora-Mihaela Iconomescu, Laurențiu-Gabriel Talaghir, Claudiu Mereuță, Anamaria Berdilă

Abstract:

The study aims to examine the relationships between motor abilities, self-evaluation of athletic competence, and demographic characteristics in a sample of late-childhood participants. Defined as physical elements that enable the movements, motor skills are classified according to movement precision as gross and fine motor skills. Across their development, children enhance their ability to coordinate the limbs to produce different actions. In educational settings, they perform various instructional activities that involve the improvement of their athletic prowess and are taught how to strengthen their gross and fine motor abilities. Also, in relation to their activities, children tend to evaluate themselves differently across the various domains of their life. Starting from childhood, athletic competence is one of the area-specific evaluations of competence that refers to one’s ability to do well at sports, including outdoor games. Method: The sample consisted of fifty-eight primary school children, thirty girls, and twenty-eight boys, with ages between 8-10 years. The Bruininks-Oseretsky test of motor proficiency was used to assess both gross and fine motor skills in eight specific areas (fine motor precision, fine motor integration, manual dexterity, bilateral coordination, balance, running speed and agility, upper-limb coordination, strength). Athletic competence self-perceived was assessed with one of the six subscales of the Self-Perception Profile for Children. Results: Were examined both the relationships between each motor skills scale and subscales and between motor skills and general self-perceived athletic competence. Results indicated correlations between the athletic competence and four motor skills subscales depending on the gender and age of the children. The findings of the study were discussed related to the possibility to improve children's physical proficiency in educational settings according to the level of self-perceived athletic competence.

Keywords: gross motor skills, fine motor skills, athletic competence, self-evaluation, children, education

Procedia PDF Downloads 72
2347 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 277
2346 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 114
2345 Comparative Evaluation of Seropositivity and Patterns Distribution Rates of the Anti-Nuclear Antibodies in the Diagnosis of Four Different Autoimmune Collagen Tissue Diseases

Authors: Recep Kesli, Onur Turkyilmaz, Cengiz Demir

Abstract:

Objective: Autoimmune collagen diseases occur with the immune reactions against the body’s own cell or tissues which cause inflammation and damage the tissues and organs. In this study, it was aimed to compare seropositivity rates and patterns of the anti-nuclear antibodies (ANA) in the diagnosis of four different autoimmune collagen tissue diseases (Rheumatoid Arthritis-RA, Systemic Lupus Erythematous-SLE, Scleroderma-SSc and Sjogren Syndrome-SS) with each other. Methods: One hundred eighty-eight patients applied to different clinics in Afyon Kocatepe University ANS Practice and Research Hospital between 11.07.2014 and 14.07.2015 that thought the different collagen disease such as RA, SLE, SSc and SS have participated in the study retrospectively. All the data obtained from the patients participated in the study were evaluated according to the included criteria. The historical archives belonging to the patients have been screened, assessed in terms of ANA positivity. The obtained data was analysed by using the descriptive statistics; chi-squared, Fischer's exact test. The evaluations were performed by SPSS 20.0 version and p < 0.05 level was considered as significant. Results: Distribution rates of the totally one hundred eighty-eight patients according to the diagnosis were found as follows: 82 (43.6%) were RA, 38 (20.2%) were SLE, 22 (11.7%) were SSc, and 46 (24.5%) were SS. Distribution of ANA positivity rates according to the collagen tissue diseases were found as follows; for RA were 54 (65,9 %), for SLE were 36 (94,7 %), for SSc were 18 (81,8 %), and for SS were 43 (93,5 %). Rheumatoid arthritis should be evaluated and classified as a different class among all the other investigated three autoimmune illnesses. ANA positivity rates were found as differently higher (91.5 %) in the SLE, SSc, and SS, from the RA (65.9 %). Differences at ANA positivity rates for RA and the other three diseases were found as statistically significant (p=0.015). Conclusions: Systemic autoimmune illnesses show broad spectrum. ANA positivity was found as an important predictor marker in the diagnosis of the rheumatologic illnesses. ANA positivity should be evaluated as more valuable and sensitive a predictor diagnostic marker in the laboratory findings of the SLE, SSc, and SS according to RA.

Keywords: antinuclear antibody (ANA), rheumatoid arthritis, scleroderma, Sjogren syndrome, systemic lupus Erythemotosus

Procedia PDF Downloads 232
2344 Vehicles Analysis, Assessment and Redesign Related to Ergonomics and Human Factors

Authors: Susana Aragoneses Garrido

Abstract:

Every day, the roads are scenery of numerous accidents involving vehicles, producing thousands of deaths and serious injuries all over the world. Investigations have revealed that Human Factors (HF) are one of the main causes of road accidents in modern societies. Distracted driving (including external or internal aspects of the vehicle), which is considered as a human factor, is a serious and emergent risk to road safety. Consequently, a further analysis regarding this issue is essential due to its transcendence on today’s society. The objectives of this investigation are the detection and assessment of the HF in order to provide solutions (including a better vehicle design), which might mitigate road accidents. The methodology of the project is divided in different phases. First, a statistical analysis of public databases is provided between Spain and The UK. Second, data is classified in order to analyse the major causes involved in road accidents. Third, a simulation between different paths and vehicles is presented. The causes related to the HF are assessed by Failure Mode and Effects Analysis (FMEA). Fourth, different car models are evaluated using the Rapid Upper Body Assessment (RULA). Additionally, the JACK SIEMENS PLM tool is used with the intention of evaluating the Human Factor causes and providing the redesign of the vehicles. Finally, improvements in the car design are proposed with the intention of reducing the implication of HF in traffic accidents. The results from the statistical analysis, the simulations and the evaluations confirm that accidents are an important issue in today’s society, especially the accidents caused by HF resembling distractions. The results explore the reduction of external and internal HF through the global analysis risk of vehicle accidents. Moreover, the evaluation of the different car models using RULA method and the JACK SIEMENS PLM prove the importance of having a good regulation of the driver’s seat in order to avoid harmful postures and therefore distractions. For this reason, a car redesign is proposed for the driver to acquire the optimum position and consequently reducing the human factors in road accidents.

Keywords: analysis vehicles, asssesment, ergonomics, car redesign

Procedia PDF Downloads 324
2343 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera

Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim

Abstract:

Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).

Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).

Procedia PDF Downloads 525
2342 Semi-Empirical Modeling of Heat Inactivation of Enterococci and Clostridia During the Hygienisation in Anaerobic Digestion Process

Authors: Jihane Saad, Thomas Lendormi, Caroline Le Marechal, Anne-marie Pourcher, Céline Druilhe, Jean-louis Lanoiselle

Abstract:

Agricultural anaerobic digestion consists in the conversion of animal slurry and manure into biogas and digestate. They need, however, to be treated at 70 ºC during 60 min before anaerobic digestion according to the European regulation (EC n°1069/2009 & EU n°142/2011). The impact of such heat treatment on the outcome of bacteria has been poorly studied up to now. Moreover, a recent study¹ has shown that enterococci and clostridia are still detected despite the application of such thermal treatment, questioning the relevance of this approach for the hygienisation of digestate. The aim of this study is to establish the heat inactivation kinetics of two species of enterococci (Enterococcus faecalis and Enterococcus faecium) and two species of clostridia (Clostridioides difficile and Clostridium novyi as a non-toxic model for Clostridium botulinum of group III). A pure culture of each strain was prepared in a specific sterile medium at concentration of 10⁴ – 10⁷ MPN / mL (Most Probable number), depending on the bacterial species. Bacterial suspensions were then filled in sterilized capillary tubes and placed in a water or oil bath at desired temperature for a specific period of time. Each bacterial suspension was enumerated using a MPN approach, and tests were repeated three times for each temperature/time couple. The inactivation kinetics of the four indicator bacteria is described using the Weibull model and the classical Bigelow model of first-order kinetics. The Weibull model takes biological variation, with respect to thermal inactivation, into account and is basically a statistical model of distribution of inactivation times as the classical first-order approach is a special case of the Weibull model. The heat treatment at 70 ºC / 60 min contributes to a reduction greater than 5 log10 for E. faecium and E. faecalis. However, it results only in a reduction of about 0.7 log10 for C. difficile and an increase of 0.5 log10 for C. novyi. Application of treatments at higher temperatures is required to reach a reduction greater or equal to 3 log10 for C. novyi (such as 30 min / 100 ºC, 13 min / 105 ºC, 3 min / 110 ºC, and 1 min / 115 ºC), raising the question of the relevance of the application of heat treatment at 70 ºC / 60 min for these spore-forming bacteria. To conclude, the heat treatment (70 ºC / 60 min) defined by the European regulation is sufficient to inactivate non-sporulating bacteria. Higher temperatures (> 100 ºC) are required as far as spore-forming bacteria concerns to reach a 3 log10 reduction (sporicidal activity).

Keywords: heat treatment, enterococci, clostridia, inactivation kinetics

Procedia PDF Downloads 98
2341 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 61
2340 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 138
2339 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 504
2338 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, scanning electron microscopy (SEM)

Procedia PDF Downloads 156
2337 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 137
2336 Step Height Calibration Using Hamming Window: Band-Pass Filter

Authors: Dahi Ghareab Abdelsalam Ibrahim

Abstract:

Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0.

Keywords: optical metrology, step heights, hamming window, band-pass filter

Procedia PDF Downloads 74
2335 Preservation of High Quality Fruit Products: Microwave Freeze Drying as a Substitute for the Conventional Freeze Drying Process

Authors: Sabine Ambros, Ulrich Kulozik

Abstract:

Berries such as blue- and raspberries belong to the most valuable fruits. To preserve the characteristic flavor and the high contents of vitamins and anthocyanins, the very sensitive berries are usually dried by lyophilization. As this method is very time- and energy-consuming, the dried fruit is extremely expensive. However, healthy snack foods are growing in popularity. Especially dried fruit free of any additives or additional sugar are more and more asked for. To make these products affordable, the fruits have to be dried by a method that is more energy-efficient than freeze drying but reveals the same high product quality. The additional insertion of microwaves to a freeze drying process was examined in this work to overcome the inconveniences of freeze drying. As microwaves penetrate the product volumetrically, sublimation takes place simultaneously all over the product and leads to a many times shorter process duration. A range of microwave and pressure settings was applied to find the optimum drying condition. The influence of the process parameters microwave power and chamber pressure on drying kinetics, product temperature and product quality was investigated to find the best condition for an energy-efficient process with high product quality. The product quality was evaluated by rehydration capacitiy, crispiness, shrinkage, color, vitamin C content and antioxidative capacity. The conclusion could be drawn that microwave freeze dried berries were almost equal to freeze dried fruit in all measured quality parameters or even could overcome it. Additionally, sensory evaluations could confirm the analytical studies. Drying time could be reduced by more than 75% at much lower energy consumption rates. Thus, an energy-efficient and cost saving method compared to the conventional freeze drying technique for the gentle production of tasty fruit or vegetable snacks has been found. This technique will make dried high-quality snacks available for many of consumers.

Keywords: blueberries, freeze drying, microwave freeze drying, process parameters, product quality

Procedia PDF Downloads 230
2334 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 139
2333 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 397