Search results for: compressive resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3868

Search results for: compressive resistance

808 Lateritic Soils from Ceara, Brazil: Sustainable Use in Constructive Blocks for Social Housing

Authors: Ivelise M. Strozberg, Juliana Sales Frota, Lucas de Oliveira Vale

Abstract:

The state of Ceara, located in the northeast region of Brazil, is abundant in lateritic soil which has been usually discarded due to its lack of agricultural potential while materials of similar nature have been used as constituents of housing constructive elements in many parts of the world, such as India and Portugal, for decades. Since many of the semi-arid housing conditions in the state of Ceara fail to meet the minimum criteria regarding comfort and safety requirements, this research proposed to study the Ceara lateritic soil and the possibility of its use as a sustainable building block constituent for social housings, collaborating to the improvement of the region living conditions. In order to achieve this objective, soil samples were collected from five different locations within the specific region, three of which presented lateritic nature, being characterized according to the Unified Soil Classification System and the MCT methodology, which is a Brazilian methodology developed during the 80’s that aimed to better describe and approach tropical soils, its characterization and behavior. Two of these samples were used to build two different miniature block prototypes, which were manually molded, heated at low temperatures -( < 300 ºC) in order to save energy and lessen the CO₂ high emission rate common in traditional burning methods- and then submitted to load tests. Among the soils tested, the one with the highest degree of laterization and greater presence of fines constituted the block with the best performance in terms of flexural strength tensions, presenting resistance gains when heated at increasing temperatures, which can indicate that this type of soil has potential towards being used as constructing material.

Keywords: constructive blocks, lateritic soil, MCT methodology, sustainability

Procedia PDF Downloads 109
807 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction

Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie

Abstract:

Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.

Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches

Procedia PDF Downloads 192
806 Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth

Authors: Ramiro Quintanilla-Licea, Isvar K. Angeles-Hernandez, Javier Vargas-Villarreal

Abstract:

Amebiasis caused by Entamoeba histolytica, associated with high morbidity and mortality, is currently a significant public health problem worldwide, especially in developing countries. In the world, around 50 million people develop this illness, and up to 100,000 deaths occur annually. Due to the side-effects and the resistance that pathogenic protozoa show against common antiparasitic drugs (e.g., metronidazole), growing attention has been paid to plants used in traditional medicine around the world to find new antiprotozoal agents. In this study is reported about the isolation and structure elucidation of antiamoebic compounds occurring in Lippia graveolens Kunth (Mexican oregano). The work-up of the methanol extract of L. graveolens afforded the known flavonoids pinocembrin (1), sakuranetin (2), cirsimaritin (3) and naringenin (4) by bioguided isolation using several chromatographic techniques. Structural elucidation of the isolated compounds was based on spectroscopic/spectrometric analyses (IR; 1H- and 13C-NMR; MS) and comparison with literature data. These compounds showed significant antiprotozoal activity against Entamoeba histolytica trophozoites using in vitro tests (positive control metronidazole IC50 0.205 µg/mL). The antiprotozoal activity of pinocembrin and naringenin (IC50 of 29.51 µg/mL and 28.85 µg/mL, respectively) was higher compared with sakuranetin (44.47 µg/mL) and with cirsimaritin (150.00 µg/mL), revealing that a 5,7-dihydroxylated A ring is essential for antiprotozoal activity. These research funds may validate the use of this plant in the traditional Mexican medicine for the treatment of some digestive disorders and can help to integrate the use of extracts of L. graveolens in the conventional and complementary medicine for the treatment of parasitic diseases.

Keywords: amoebiasis, antiprotozoal agents, bioguided isolation, infectious diseases

Procedia PDF Downloads 175
805 Study on the Effects of Grassroots Characteristics on Reinforced Soil Performance by Direct Shear Test

Authors: Zhanbo Cheng, Xueyu Geng

Abstract:

Vegetation slope protection technique is economic, aesthetic and practical. Herbs are widely used in practice because of rapid growth, strong erosion resistance, obvious slope protection and simple method, in which the root system of grass plays a very important role. In this paper, through changing the variables value of grassroots quantity, grassroots diameter, grassroots length and grassroots reinforce layers, the direct shear tests were carried out to discuss the change of shear strength indexes of grassroots reinforced soil under different reinforce situations, and analyse the effects of grassroots characteristics on reinforced soil performance. The laboratory test results show that: (1) in the certain number of grassroots diameter, grassroots length and grassroots reinforce layers, the value of shear strength, and cohesion first increase and then reduce with the increasing of grassroots quantity; (2) in the certain number of grassroots quantity, grassroots length and grassroots reinforce layers, the value of shear strength and cohesion rise with the increasing of grassroots diameter; (3) in the certain number of grassroots diameter, and grassroots reinforce layers, the value of shear strength and cohesion raise with the increasing of grassroots length in a certain range of grassroots quantity, while the value of shear strength and cohesion first rise and then decline with the increasing of grassroots length when the grassroots quantity reaches a certain value; (4) in the certain number of grassroots quantity, grassroots diameter, and grassroots length, the value of shear strength and cohesion first climb and then decline with the increasing of grassroots reinforced layers; (5) the change of internal friction angle is small in different parameters of grassroots. The research results are of importance for understanding the mechanism of vegetation protection for slopes and determining the parameters of grass planting.

Keywords: direct shear test, reinforced soil, grassroots characteristics, shear strength indexes

Procedia PDF Downloads 157
804 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization

Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon

Abstract:

The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.

Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization

Procedia PDF Downloads 425
803 Evaluation of Central Nervous System Activity of Synthesized 5, 5-Diphenylimidazolidine-2, 4-Dione Derivatives

Authors: Shweta Verma

Abstract:

Background: Epilepsy is a chronic non-communicable central nervous system (CNS) disorder which affects a large population of all ages. Different classes of drugs are used for the treatment of this neurological disorder, but due to augmented drug resistance and side effects, these drugs become incompetent. Therefore, we design the synthesis of ten new derivatives of Phenytoin. The moiety of Phenytoin was hybridized with different phenols by using three step approach. The synthesized molecules were then investigated for different physicochemical parameters, such as Log P values using diverse software programs and to predict the potential to cross the blood-brain barrier. Objective: The Phenytoin derivatives were designed, synthesized, and characterized to meet the structural necessities indispensable for antiepileptic activity. Method: Firstly, the chloroacetylation of the 5,5-diphenyl hydantoin was carried out, and then various substituted phenols were added to it. The synthesized compounds were characterized and evaluated for antianxiety activity by elevated plus maze method and antiepileptic activity by using subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) models and neurotoxicity. Result: The number of derivatives of 5,5-diphenyl hydantoin was developed and optimized. The number of parameters was optimized which reveal that the compound containing chloro group such as C3 and C6 showed imperative potential when compared with the standard drug Diazepam. Other compounds containing nitro and methyl group were also found to possess activity. Conclusion: It was summarized that the new compounds of 5,5-diphenyl hydantoin derivatives were synthesized. The results of the data show that the compound containing chloro group is more potent for CNS activity. The new compounds have the probability of being optimized further to engender new scaffolds to treat various CNS disorders.

Keywords: phenytoin, parameters, CNS activity, blood-brain barrier, Log P, CNS active

Procedia PDF Downloads 52
802 Identity Struggle of Young Muslim Women in the Spatial Context in Turki̇ye

Authors: Ayça Çavdar

Abstract:

In this study, the ‘Kadınlar Camilerde (Women in Mosques)’ movement in Turkey will be investigated. Specifically, this paper focuses on the identity struggle of young Muslim women in Turkey in a spatial context. Kadınlar Camilerde is composed of a group of Muslim women who constantly use mosques, come together in mosques, communicate via social media, talk about the situation of women in mosques, and seek solutions for the conditions they find "unequal". This paper’s objective is to understand the relationship between women’s participation in the public sphere (work-education) and their spatial demands, the relationship between the support they receive from their close and distant environment and their ability to take unconventional actions, the relationship between religiosity and the ability to engage in unconventional actions, and also to understand how the social and cultural meanings of mosque spaces differ for women. To find answers to the research questions, an online survey will be conducted. Participants of this survey will be Muslim women who are supporters and non-supporters of ‘Kadınlar Camilerde.’ Although the aim is to investigate supporters of Kadınlar Camilerde, there will be a need for the participants to the non-supporters to see their revealed differences in thoughts and behaviors. In addition to the aforementioned research questions, the paper will seek to find out how supporters and non-supporters Muslim women differ. It is expected to find out that younger women tend to participate in Kadınlar Camilerde. It is also hypothesized that the more women get involved in the public sphere, the more space they demand from society. The paper hypothesizes that the women encouraged by their family, husband, and friends are eager to participate in unconventional actions. It is finally hypothesized that there is no relation between religiosity and the choice of unconventional actions.

Keywords: women, mosques, resistance, türkiye

Procedia PDF Downloads 44
801 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 87
800 An In-Situ Integrated Micromachining System for Intricate Micro-Parts Machining

Authors: Shun-Tong Chen, Wei-Ping Huang, Hong-Ye Yang, Ming-Chieh Yeh, Chih-Wei Du

Abstract:

This study presents a novel versatile high-precision integrated micromachining system that combines contact and non-contact micromachining techniques to machine intricate micro-parts precisely. Two broad methods of micro fabrication-1) volume additive (micro co-deposition), and 2) volume subtractive (nanometric flycutting, ultrafine w-EDM (wire Electrical Discharge Machining), and micro honing) - are integrated in the developed micromachining system, and their effectiveness is verified. A multidirectional headstock that supports various machining orientations is designed to evaluate the feasibility of multifunctional micromachining. An exchangeable working-tank that allows for various machining mechanisms is also incorporated into the system. Hence, the micro tool and workpiece need not be unloaded or repositioned until all the planned tasks have been completed. By using the designed servo rotary mechanism, a nanometric flycutting approach with a concentric rotary accuracy of 5-nm is constructed and utilized with the system to machine a diffraction-grating element with a nano-metric scale V-groove array. To improve the wear resistance of the micro tool, the micro co-deposition function is used to provide a micro-abrasive coating by an electrochemical method. The construction of ultrafine w-EDM facilitates the fabrication of micro slots with a width of less than 20-µm on a hardened tool. The hardened tool can thus be employed as a micro honing-tool to hone a micro hole with an internal diameter of 200 µm on SKD-11 molded steel. Experimental results prove that intricate micro-parts can be in-situ manufactured with high-precision by the developed integrated micromachining system.

Keywords: integrated micromachining system, in-situ micromachining, nanometric flycutting, ultrafine w-EDM, micro honing

Procedia PDF Downloads 392
799 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 213
798 Preparation and Analysis of Chitosan-Honey Films for Wound Dressing Application

Authors: L. Sasikala, Bhaarathi Dhurai

Abstract:

Increase in antibiotic resistance bacteria leads to the development of active wound dressings, which absorb any bodily fluid, evaporation of moisture at a certain rate and can be easily removed after healing. Natural materials like chitosan, herbs, and honey have number of active materials present in them to accelerate wound healing and to arrest wound in infections. Hence with the advantages of biomaterials, a film was prepared using chitosan and honey. There are a lot of practical considerations with respect to honey. Honey exerts many beneficial actions on the wound surface only when it remains. The attempts to hold honey on the surface of the wound remain a question because honey becomes a very runny liquid when it comes to body temperature. Hence, this research was focused on development of a new form of wound dressing, by holding honey on the wound surface in different form and also which has a combined effect of manuka (Leptospermum scoparium) honey and chitosan. Chitosan-honey film was prepared using casting technique. Films were prepared in different variations; with acetic acid and with lactic acid; with and without honey. In summary, the film produced from 2% chitosan- 1% lactic acid as a solvent, with 10% honey shows optimum inclined values in all the tests, like thickness, folding endurance, weight, water vapor transmission, tensile strength, swelling ratio and antimicrobial activity, with specific reference to wound dressings. The film has water vapor transmission of 1680 g/m²/day, water absorption of 225%, tensile strength of 39.1N/mm² and elongation of 50.3%. There is a notable inhibition zone of 29 mm against S. aureus and 24 mm against E. coli in the case of chitosan-lactic acid-honey film. The film also arrests, microbes transmitting from the outside environment to wound bed, which can be used as an effective wound dressing material.

Keywords: casting technique, chitosan, honey, film, wound dressings

Procedia PDF Downloads 223
797 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 165
796 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 100
795 Association of Vitamin D Levels in Obese and Non-Obese Patients with Polycystic Ovarian Syndrome in East Indian Populations

Authors: Dipanshu Sur, Ratnabali Chakravorty

Abstract:

Introduction: Polycystic ovary syndrome (PCOS) is the most common metabolic abnormality such as changes in lipid profile, diabetes, hypertension and metabolic syndrome occurring in women. Hypovitaminsis D was found to be associated with the development of obesity and insulin resistance in women with PCOS. Aim: To evaluate the association of vitamin D levels in obese and non-obese patients with PCOS in an East Indian populations. Methods: A case control study was conducted. It enrolled 100 cases of PCOS based on Rotterdam criteria and 100 ovulatory normal cases matched for their age and BMI. Vitamin D levels were compared in the obese and non-obese PCOS groups and also with the controls. Results: The mean age of subjects was 29.48 ± 3.29 years in the PCOS group and 26.24 ± 2.56 years in the control group. Hypovitaminosis D was present in 75 out of 100 PCOS women (75.0%) and 25 women (25.0%) showed sufficient 25OHD levels ≥30 ng/ml. Women with PCOS had significantly lower total serum calcium (8.4 ± 0.25 mg/dl versus 9.8 ± 0.17 mg/dl in controls), and 25 OHD (21.2 ± 2.56 ng/ml versus 32.6 ± 2.23 ng/ml in control group) than ovulatory normal women. This difference remained significant for both groups after adjustment for BMI. Obese women in both groups had significantly lower concentration of calcium and 25OHD than normal weight patients in this study. Conclusion: Our study shows majority of the patients and controls had vitamin D deficiency and there was significant difference in the vitamin D levels in PCOS group and controls as well as obese and non-obese groups. This may reflect the vitamin D deficiency status of the community. Vitamin D deficiency should demands immediate attention as it is a severe problem among the East Indian population.

Keywords: vitamin D deficiency, polycystic ovary syndrome, obese, hypovitaminsis D

Procedia PDF Downloads 296
794 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)

Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi

Abstract:

The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco

Procedia PDF Downloads 117
793 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 128
792 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 116
791 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 831
790 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application

Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo

Abstract:

This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.

Keywords: hierarchical porous carbon, cerium oxide, supercapacitor

Procedia PDF Downloads 107
789 Biodegradable Polymer Composites of MOF-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila A. M. Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 116
788 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving

Procedia PDF Downloads 168
787 Species Composition and Plasmodium Infection Rates of Anopheles Mosquitoes in Kilosa, Tanzania

Authors: Amina R. Issae, Godfrey C. Katusi, Beda J. Mwang’Onde, Ladslaus L. Mnyone, Allen L. Malisa

Abstract:

Background: The fluctuating composition of mosquito species over time, driven by ecological changes in specific regions, plays a pivotal role in the transmission of malaria. Grasping these dynamics is fundamental for establishing a baseline understanding and is crucial for identifying transmission patterns. This knowledge is essential in devising effective strategies for managing and controlling vector populations. Our study focused on examining the species composition and Plasmodium infection rates of malaria vectors, aiming to enhance the health and well-being of communities affected by malaria. Methods: Species composition was determined through a cross-sectional collection of mosquitoes, conducted once in the village, in four selected villages of Kilosa district, Tanzania. Mosquitoes were collected indoors and outdoors using CDC light traps. A sub-sample of all collected mosquitoes was subjected to PCR identification and assayed for Plasmodium porozoites. Results: A total of 6493 female Anophelines mosquitoes were collected, of which eight species were identified as Anopheles gambiaes.l., An. funestus group, An. coustani, An. pharoensis, An. squamosus, and An. rufipes. The abundance of the Anopheles gambiaes.s.and An. funestuss.s. varied with location and village. A total of 5 sporozoite-positive mosquitoes were found, of which 4 were An. funestuss.s. and 1 was An. gambiaes.s. Conclusions: Anopheles gambiaes.s.and An. funestuss.s. were identified as the most abundant malaria vectors, respectively. Sporozoite analysis indicated this for An. funestuss.s. contribute to most of the malaria transmission in the area. Further studies are required to assess the role of seasonal shifts in vector abundance, insecticide resistance and malaria transmission of the vectors.

Keywords: mosquito, composition, malaria, sporozoites

Procedia PDF Downloads 20
786 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 273
785 Pressure Sensitive v/s Pressure Resistance Institutional Investors towards Socially Responsible Investment Behavior: Evidence from Malaysia

Authors: Mohammad Talha, Abdullah Sallehhuddin Abdullah Salim, Abdul Aziz Abdul Jalil, Norzarina Md Yatim

Abstract:

The significant contribution of institutional investors across the globe in socially responsible investment (SRI) is well-documented in the literature. Nevertheless, how the SRI behavior of pressure-resistant, pressure-sensitive and pressure-indeterminate institutional investors remain unexplored extensively. This study examines the moderating effect of institutional investors towards socially responsible investment behavior in the context of emerging economies. This study involved 229 institutional investors in Malaysia. A total of 1,145 questionnaires were distributed. Out of these, 308 (130 pressure sensitive institutional investors and 178 pressure resistant institutional investors), representing a usable rate of 26.9 per cent, were found fit for data analysis. Utilizing multi-group analysis via AMOS, this study found evidence for the presence of moderating effect by a type of institutional investor topology in socially responsible investment behavior. At intentional level, it established that type of institutional investor was a significant moderator in the relationship between subjective norms, and caring ethical climate with intention among pressure-resistant institutional investors, as well as between perceived behavioral controls with intention among pressure-sensitive institutional investors. At the behavioral level, the results evidenced that there was only a significant moderating effect between intention and socially responsible investment behavior among pressure-resistant institutional investors. The outcomes are expected to benefit policy makers, regulators, and market participants in order to leap forward SRI growth in developing economies. Nevertheless, the outcomes are limited to a few factors, and it is believed that future studies shall address those limitations.

Keywords: socially responsible investment, behavior, pressure sensitive investors, pressure insensitive investors, Institutional Investment Malaysia

Procedia PDF Downloads 333
784 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite

Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler

Abstract:

Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.

Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC

Procedia PDF Downloads 263
783 Plausible Influence of Hydroxycitric Acid and Garcinol in Garcinia indica Fruit Extract in High Fat Diet Induced Type 2 Diabetes Mellitus

Authors: Hannah Rachel Vasanthi, Paomipem Phazang, Veereshkumar, Sali, Ramesh Parjapath, Sangeetha Marimuthu Kannan

Abstract:

Garcinia indica (G. indica) fruit rind extract commonly used in South Indian culinary and Indian System of medicines is reported to exhibit various biological activities. The present study envisages the influence of the phytoconstituents in G. indica extract (Vrikshamla capsules- a herbal supplement) on diabetic condition. The condition of type 2 diabetes was triggered in experimental animals by feeding high fat diet for 8 weeks followed by a sub-diabetogenic dose of 35mg/kg bw of streptozotocin intraperitoneally. Oral supplementation of the extract at two doses (100 and 200 mg/kg body weight) for 14 days reduced hyperglycemia, hypercholesterolemia and dyslipidemia (p< 0.001). Pathophysiological changes of obesity and diabetes associated complications majorly mediated by oxidative stress were analyzed by measuring the markers of oxidative stress such as lipid peroxidation, enzymatic (SOD, Catalase, GPx) and non-enzymatic markers (GSH). Conspicuous changes markers were noticed in diabetic condition which was reverted by the G. indica extract. Screening the extract by AccuTOF-DART (MS) revealed the presence of hydroxycitric acid and garcinol in abundant quantity which probably has influenced the biological activity. This was also corroborated through docking studies of hydroxycitric acid and garcinol both individually and synergistically with the antioxidant proteins. Altogether, hydroxycitric acid and garcinol present in G. indica fruit extract alleviates the pathophysiological conditions such as hyperglycemia, dyslipidemia, insulin resistance and oxidative stress mediated by diabesity.

Keywords: antioxidants , diabesity, hydroxycitric acid, garcinol, Garcinia indica, sreptozotocin

Procedia PDF Downloads 245
782 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue

Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța

Abstract:

Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.

Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals

Procedia PDF Downloads 87
781 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 319
780 A Study on the Microbilogical Profile and Antibiotic Sensitivity Pattern of Bacterial Isolates Causing Urinary Tract Infection in Intensive Care Unit Patients in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

The study was done to determine the microbiological profile and changing pattern of the pathogens causing UTI in the ICU patients. All the patients admitted to the ICU with urinary catheter insertion for more than 48hours were included in the study. Urine samples were collected in a sterile container with aseptic precaution using disposable syringe and was processed as per standards. Antimicrobial susceptibility test was done by Disc Diffusion method as per CLSI guidelines. A total of 100 urine samples were collected from ICU patients, out of which 30% showed significant bacterial growth and 7% showed growth of candida spp. Prevalence of UTI was more in female (73%) than male (27.%). Gram-negative bacilli 26(86.67%) were more common in our study followed by gram-positive cocci 4(13.33%). The most common uropathogens isolated were Escherichia coli 14 (46.67%), followed by Klebsiella spp 7(23.33%), Staphylococcus aureus 4(13.33%), Acinetobacter spp 3(10%), Enterococcus faecalis 1(3.33%) and Pseudomonas aeruginosa 1(3.33%). Most of the Gram-negative bacilli were sensitive to amikacin (80%) and nitrofurantoin (80%), where as all gram-positive organisms were sensitive to Vancomycin. A large number ESBL producers were also observed in this study. The study finding showed that E.coli is the predominant pathogen and has increasing resistance pattern to the commonly used antibiotics. The study proposes that the adherence to antibiotic policy is the key ingredients for successful outcome in ICU patients and also emphasizes that repeated evaluation of microbial characteristics and continuous surveillance of resistant bacteria is required for selection of appropriate antibiotic therapy.

Keywords: antimicrobial sensitivity, intensive care unit, nosocomial infection, urinary tract infection

Procedia PDF Downloads 250
779 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 85