Search results for: MobileNetV2 neural network
2255 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching
Authors: Enrique Barra, Aldo Gordillo, Juan Quemada
Abstract:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a video conference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.Keywords: e-learning, platform, authoring tool, science teaching, educational sciences
Procedia PDF Downloads 4012254 Academic Staff’s Perception and Willingness to Participate in Collaborative Research: Implication for Development in Sub-Saharan Africa
Authors: Ademola Ibukunolu Atanda
Abstract:
Research undertakings are meant to proffer solutions to issues and challenges in society. This justifies the need for research in ivory towers. Multinational and non-governmental organisations, as well as foundations, commit financial resources to support research endeavours. In recent times, the direction and dimension of research undertaking encourage collaborations, whereby experts from different disciplines or specializations would bring their expertise in addressing any identified problem, whether in humanities or sciences. However, the extent to which collaborative research undertakings are perceived and embraced by academic staff would determine the impact collaborative research would have on society. To this end, this study investigated academic staff’s perception and willingness to be involved in collaborative research for the purpose of proffering solutions to societal problems. The study adopted a descriptive research design. The population comprised academic staff in southern Nigeria. The sample was drawn through a convenient sampling technique. The data were collected using a questionnaire titled “Perception and Willingness to Participate in Collaborative Research Questionnaire (PWPCRQ)’ using Google Forms. Data collected were analyzed using descriptive statistics of simple percentages, mean and charts. The findings showed that Academic Staff’s readiness to participate in collaborative research is to a great extent (89%) and they participate in collaborative research very often (51%). The Academic Staff was involved more in collaboration research among their colleagues within their universities (1.98) than participation in inter-disciplines collaboration (1.47) with their colleagues outside Nigeria. Collaborative research was perceived to impact on development (2.5). Collaborative research offers the following benefits to members’ aggregation of views, the building of an extensive network of contacts, enhancement of sharing of skills, facilitation of tackling complex problems, increased visibility of research network and citations and promotion of funding opportunities. The study concluded that Academic staff in universities in the South-West of Nigeria participate in collaborative research but with their colleagues within Nigeria rather than outside the country. Based on the findings, it was recommended that the management of universities in South-West Nigeria should encourage collaborative research with some incentives.Keywords: collaboration, research, development, participation
Procedia PDF Downloads 672253 A Study of Topical and Similarity of Sebum Layer Using Interactive Technology in Image Narratives
Authors: Chao Wang
Abstract:
Under rapid innovation of information technology, the media plays a very important role in the dissemination of information, and it has a totally different analogy generations face. However, the involvement of narrative images provides more possibilities of narrative text. "Images" through the process of aperture, a camera shutter and developable photosensitive processes are manufactured, recorded and stamped on paper, displayed on a computer screen-concretely saved. They exist in different forms of files, data, or evidence as the ultimate looks of events. By the interface of media and network platforms and special visual field of the viewer, class body space exists and extends out as thin as sebum layer, extremely soft and delicate with real full tension. The physical space of sebum layer of confuses the fact that physical objects exist, needs to be established under a perceived consensus. As at the scene, the existing concepts and boundaries of physical perceptions are blurred. Sebum layer physical simulation shapes the “Topical-Similarity" immersing, leading the contemporary social practice communities, groups, network users with a kind of illusion without the presence, i.e. a non-real illusion. From the investigation and discussion of literatures, digital movies editing manufacture and produce the variability characteristics of time (for example, slices, rupture, set, and reset) are analyzed. Interactive eBook has an unique interaction in "Waiting-Greeting" and "Expectation-Response" that makes the operation of image narrative structure more interpretations functionally. The works of digital editing and interactive technology are combined and further analyze concept and results. After digitization of Interventional Imaging and interactive technology, real events exist linked and the media handing cannot be cut relationship through movies, interactive art, practical case discussion and analysis. Audience needs more rational thinking about images carried by the authenticity of the text.Keywords: sebum layer, topical and similarity, interactive technology, image narrative
Procedia PDF Downloads 3912252 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks
Authors: Mehmet Karaata
Abstract:
Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security
Procedia PDF Downloads 4492251 Computational Team Dynamics in Student New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire.Keywords: team dynamics, social network analysis, team interaction patterns, new product development teamwork, NPD teams
Procedia PDF Downloads 1192250 The Canaanite Trade Network between the Shores of the Mediterranean Sea
Authors: Doaa El-Shereef
Abstract:
The Canaanite civilization was one of the early great civilizations of the Near East, they influenced and been influenced from the civilizations of the ancient world especially the Egyptian and Mesopotamia civilizations. The development of the Canaanite trade started from the Chalcolithic Age to the Iron Age through the oldest trade route in the Middle East. This paper will focus on defining the Canaanites and from where did they come from and the meaning of the term Canaan and how the Ancient Manuscripts define the borders of the land of Canaan and this essay will describe the Canaanite trade route and their exported goods such as cedar wood, and pottery.Keywords: archaeology, bronze age, Canaanite, colonies, Massilia, pottery, shipwreck, vineyards
Procedia PDF Downloads 2062249 Neural Correlates of Decision-Making Under Ambiguity and Conflict
Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy
Abstract:
Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.Keywords: decision making, uncertainty, ambiguity, conflict, fMRI
Procedia PDF Downloads 5682248 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas
Authors: Thulane Paepae, Tumisang Seodigeng
Abstract:
This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space
Procedia PDF Downloads 2432247 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention
Authors: Lawrence Williams
Abstract:
As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.Keywords: DNS, tunneling, exfiltration, botnet
Procedia PDF Downloads 812246 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities
Procedia PDF Downloads 2492245 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1422244 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model
Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee
Abstract:
Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.Keywords: diabetes, patients, self-care behaviors, health belief model
Procedia PDF Downloads 4712243 Age-Dependent Anatomical Abnormalities of the Amygdala in Autism Spectrum Disorder and their Implications for Altered Socio-Emotional Development
Authors: Gabriele Barrocas, Habon Issa
Abstract:
The amygdala is one of various brain regions that tend to be pathological in individuals with autism spectrum disorder (ASD). ASD is a prevalent and heterogeneous developmental disorder affecting all ethnic and socioeconomic groups and consists of a broad range of severity, etiology, and behavioral symptoms. Common features of ASD include but are not limited to repetitive behaviors, obsessive interests, and anxiety. Neuroscientists view the amygdala as the core of the neural system that regulates behavioral responses to anxiogenic and threatening stimuli. Despite this consensus, many previous studies and literature reviews on the amygdala’s alterations in individuals with ASD have reported inconsistent findings. In this review, we will address these conflicts by highlighting recent studies which reveal that anatomical and related socio-emotional differences detected between individuals with and without ASD are highly age-dependent. We will specifically discuss studies using functional magnetic resonance imaging (fMRI), structural MRI, and diffusion tensor imaging (DTI) to provide insights into the neuroanatomical substrates of ASD across development, with a focus on amygdala volumes, cell densities, and connectivity.Keywords: autism, amygdala, development, abnormalities
Procedia PDF Downloads 1292242 Internet of Things Applications on Supply Chain Management
Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca
Abstract:
The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management
Procedia PDF Downloads 4292241 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU
Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais
Abstract:
Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking
Procedia PDF Downloads 382240 The Use of Instagram as a Sales Tool by Small Fashion/Clothing Businesses
Authors: Santos Andressa M. N.
Abstract:
The research brings reflections on the importance of Instagram for the clothing trade, aiming to analyze the use of this social network as a sales tool by small companies in the fashion/clothing sector in Boqueirão-PI. Thus, field research was carried out, with the application of questionnaires, to raise and analyze data related to the topic. Thus, it is believed that Instagram positively influences the dissemination, visibility, reach and profitability of companies in Boqueirão do Piauí. The survey had a low number of companies due to the lack of availability of the owners during the COVID-19 pandemic.Keywords: Instagram, sales, fashion, marketing
Procedia PDF Downloads 652239 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline
Procedia PDF Downloads 882238 Factorization of Computations in Bayesian Networks: Interpretation of Factors
Authors: Linda Smail, Zineb Azouz
Abstract:
Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks.Keywords: Bayesian networks, D-Separation, level two Bayesian networks, factorization of computation
Procedia PDF Downloads 5342237 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs
Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon
Abstract:
The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs
Procedia PDF Downloads 1222236 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation
Authors: Desmond Young
Abstract:
In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.Keywords: energy, ADMD, electrical load assessment, energy benchmarks
Procedia PDF Downloads 1162235 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1302234 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-de Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication.Keywords: chaotic laser, network, star topology, synchronization
Procedia PDF Downloads 5692233 Relationship Between Brain Entropy Patterns Estimated by Resting State fMRI and Child Behaviour
Authors: Sonia Boscenco, Zihan Wang, Euclides José de Mendoça Filho, João Paulo Hoppe, Irina Pokhvisneva, Geoffrey B.C. Hall, Michael J. Meaney, Patricia Pelufo Silveira
Abstract:
Entropy can be described as a measure of the number of states of a system, and when used in the context of physiological time-based signals, it serves as a measure of complexity. In functional connectivity data, entropy can account for the moment-to-moment variability that is neglected in traditional functional magnetic resonance imaging (fMRI) analyses. While brain fMRI resting state entropy has been associated with some pathological conditions like schizophrenia, no investigations have explored the association between brain entropy measures and individual differences in child behavior in healthy children. We describe a novel exploratory approach to evaluate brain fMRI resting state data in two child cohorts, and MAVAN (N=54, 4.5 years, 48% males) and GUSTO (N = 206, 4.5 years, 48% males) and its associations to child behavior, that can be used in future research in the context of child exposures and long-term health. Following rs-fMRI data pre-processing and Shannon entropy calculation across 32 network regions of interest to acquire 496 unique functional connections, partial correlation coefficient analysis adjusted for sex was performed to identify associations between entropy data and Strengths and Difficulties questionnaire in MAVAN and Child Behavior Checklist domains in GUSTO. Significance was set at p < 0.01, and we found eight significant associations in GUSTO. Negative associations were found between two frontoparietal regions and cerebellar posterior and oppositional defiant problems, (r = -0.212, p = 0.006) and (r = -0.200, p = 0.009). Positive associations were identified between somatic complaints and four default mode connections: salience insula (r = 0.202, p < 0.01), dorsal attention intraparietal sulcus (r = 0.231, p = 0.003), language inferior frontal gyrus (r = 0.207, p = 0.008) and language posterior superior temporal gyrus (r = 0.210, p = 0.008). Positive associations were also found between insula and frontoparietal connection and attention deficit / hyperactivity problems (r = 0.200, p < 0.01), and insula – default mode connection and pervasive developmental problems (r = 0.210, p = 0.007). In MAVAN, ten significant associations were identified. Two positive associations were found = with prosocial scores: the salience prefrontal cortex and dorsal attention connection (r = 0.474, p = 0.005) and the salience supramarginal gyrus and dorsal attention intraparietal sulcus (r = 0.447, p = 0.008). The insula and prefrontal connection were negatively associated with peer problems (r = -0.437, p < 0.01). Conduct problems were negatively associated with six separate connections, the left salience insula and right salience insula (r = -0.449, p = 0.008), left salience insula and right salience supramarginal gyrus (r = -0.512, p = 0.002), the default mode and visual network (r = -0.444, p = 0.009), dorsal attention and language network (r = -0.490, p = 0.003), and default mode and posterior parietal cortex (r = -0.546, p = 0.001). Entropy measures of resting state functional connectivity can be used to identify individual differences in brain function that are correlated with variation in behavioral problems in healthy children. Further studies applying this marker into the context of environmental exposures are warranted.Keywords: child behaviour, functional connectivity, imaging, Shannon entropy
Procedia PDF Downloads 2072232 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 1262231 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning
Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández
Abstract:
In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics
Procedia PDF Downloads 4812230 Thinking about the Loss of Social Networking Sites May Expand the Distress of Social Exclusion
Authors: Wen-Bin Chiou, Hsiao-Chiao Weng
Abstract:
Social networking sites (SNS) such as Facebook and Twitter are low-cost tools that can promote the creation of social connections by providing a convenient platform that can be accessed at any time. In the current research, a laboratory experiment was conducted test the hypothesis that reminders of losing SNS would alter the impact of social events, especially those involving social exclusion. Specifically, this study explored whether losing SNS would intensify perceived social distress induced by exclusionary bogus feedback. Eighty-eight Facebook users (46 females, 42 males; mean age = 22.6 years, SD = 3.1 years) were recruited via campus posters and flyers at a national university in southern Taiwan. After participants provided consent, they were randomly assigned to a 2 (SNS non-use vs. neutral) between-subjects experiment. Participants completed an ostensible survey about online social networking in which we included an item about the time spent on SNS per day. The last question was used to manipulate thoughts about losing SNS access. Participants under the non-use condition were asked to record three conditions that would render them unable to use SNS (e.g., a network adaptor problem, malfunctioning cable modem, or problems with Internet service providers); participants under the neutral condition recorded three conditions that would render them unable to log onto the college website (e.g., server maintenance, local network or firewall problems). Later, this experiment employed a bogus-feedback paradigm to induce social exclusion. Participants then rated their social distress on a four-item scale, identical to that of Experiment 1 (α = .84). The results showed that thoughts of losing SNS intensified distress caused by social exclusion, suggesting that the loss of SNS has a similar effect to the loss of a primary source for social reconnections. Moreover, the priming effects of SNS on perceived distress were more prominent for heavy users. The demonstrated link between the idea of losing SNS use and increased pain of social exclusion manifests the importance of SNS as a crucial gateway for acquiring and rebuilding social connections. Use of online social networking appears to be a two-edged sword for coping with social exclusion in human lives in the e-society.Keywords: online social networking, perceived distress, social exclusion, SNS
Procedia PDF Downloads 4232229 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment
Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen
Abstract:
Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram
Procedia PDF Downloads 5152228 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 832227 Dynamic Network Approach to Air Traffic Management
Authors: Catia S. A. Sima, K. Bousson
Abstract:
Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains
Procedia PDF Downloads 1352226 Dynamic Communications Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina
Abstract:
In this paper, we propose heuristic for dynamic communications mapping that considers the placement of communications in order to optimize the overall performance. The mapping technique uses a newly proposed Algorithm to place communications between the tasks. The placement we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed mapping approach provides significant performance improvements when compared to those using static routing.Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), heterogeneous architectures, dynamic mapping heuristics
Procedia PDF Downloads 540