Search results for: deep networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4565

Search results for: deep networks

1535 Cardiopulmonary Resuscitation Performance Efficacy While Wearing a Powered Air-Purifying Respirator

Authors: Jun Young Chong, Seung Whan Kim

Abstract:

Introduction: The use of personal protective equipment for respiratory infection control in cardiopulmonary resuscitation (CPR) is a physical burden to healthcare providers. It matters how long CPR quality according to recommended guidelines can be maintained under these circumstances. It was investigated whether chest compression time was appropriate for a 2-minute shift and how long it was maintained in accordance with the guidelines under such conditions. Methods: This prospective crossover simulation study was performed at a single center from September 2020 to October 2020. Five indicators of CPR quality were measured during the first and second sessions of the study period. All participants wore a Level D powered air-purifying respirator (PAPR), and the experiment was conducted using a Resusci Anne manikin, which can measure the quality of chest compressions. Each participant conducted two sessions. In session one, 2-minutes of chest compressions followed by a 2-minute rest was repeated twice; in session two, 1-minute of chest compressions followed by a 1-minute rest was repeated four times. Results: All 34 participants completed the study. The deep and sufficient compression rate was 65.9 ± 13.1 mm in the 1-minute shift group and 61.5 ± 30.5 mm in the 2-minute shift group. The mean depth was 52.8 ±4.3 mm in the 1-minute shift group and 51.0 ± 6.1 mm in the 2-minute shift group. In these two values, there was a statistically significant difference between the two sessions. There was no statistically significant difference in the other CPR quality values. Conclusions: It was suggested that the different standard of current 2-minute to 1-minute cycles due to a significant reduction in the quality of chest compression in cases of CPR with PAPR.

Keywords: cardiopulmonary resuscitation, chest compression, personal protective equipment, powered air-purifying respirator

Procedia PDF Downloads 115
1534 Impact of SES and Culture on Well-Being of Adolescent

Authors: Shraddha B. Rai, Mahipatsinh D. Chavda, Bharat S. Trivedi

Abstract:

The aim of the present research is to study the effect of education and social belonging on well-being of youth. Well-being is one of the most important aspects of human being and the state of well-being can be attained in terms of healthy body with healthy mind. Well-being has been defined as encompassing people’s cognitive and affective evaluations of their lives. Well-being has been interchangeably used with health and quality of life. According to the WHO, the main determinants of health include the social, economic, and the physical environment and the persons individual characteristics and behaviors. WHO lists other factors that can influence the well-being of a person such as the gender, education, social support networks and health services. The main objective of the present investigation is to know the effect of education and social belonging on well-being of youth. The sample of 180 students belonging to Gujarati and English (convent) culture were selected randomly from Guajarati and English (convent) schools of Ahmedabad City of Gujarat (India). General well-being Scale by Dr. Ashok Kalia and Ms. Anita Deswal was administered to measure the Physical, Emotional, and Social and school well-being. The result shows that there is significant different found between Gujarati and English (convent) culture on Well-being in school students. SES is also affect significantly to wellbeing of students.

Keywords: culture, SES, well-being, health, quality of life

Procedia PDF Downloads 528
1533 The Strategic Importance of Technology in the International Production: Beyond the Global Value Chains Approach

Authors: Marcelo Pereira Introini

Abstract:

The global value chains (GVC) approach contributes to a better understanding of the international production organization amid globalization’s second unbundling from the 1970s on. Mainly due to the tools that help to understand the importance of critical competences, technological capabilities, and functions performed by each player, GVC research flourished in recent years, rooted in discussing the possibilities of integration and repositioning along regional and global value chains. Regarding this context, part of the literature endorsed a more optimistic view that engaging in fragmented production networks could represent learning opportunities for developing countries’ firms, since the relationship with transnational corporations could allow them build skills and competences. Increasing recognition that GVCs are based on asymmetric power relations provided another sight about benefits, costs, and development possibilities though. Once leading companies tend to restrict the replication of their technologies and capabilities by their suppliers, alternative strategies beyond the functional specialization, seen as a way to integrate value chains, began to be broadly highlighted. This paper organizes a coherent narrative about the shortcomings of the GVC analytical framework, while recognizing its multidimensional contributions and recent developments. We adopt two different and complementary perspectives to explore the idea of integration in the international production. On one hand, we emphasize obstacles beyond production components, analyzing the role played by intangible assets and intellectual property regimes. On the other hand, we consider the importance of domestic production and innovation systems for technological development. In order to provide a deeper understanding of the restrictions on technological learning of developing countries’ firms, we firstly build from the notion of intellectual monopoly to analyze how flagship companies can prevent subordinated firms from improving their positions in fragmented production networks. Based on intellectual property protection regimes we discuss the increasing asymmetries between these players and the decreasing access of part of them to strategic intangible assets. Second, we debate the role of productive-technological ecosystems and of interactive and systemic technological development processes, as concepts of the Innovation Systems approach. Supporting the idea that not only endogenous advantages are important for international competition of developing countries’ firms, but also that the building of these advantages itself can be a source of technological learning, we focus on local efforts as a crucial element, which is not replaceable for technology imported from abroad. Finally, the paper contributes to the discussion about technological development as a two-dimensional dynamic. If GVC analysis tends to underline a company-based perspective, stressing the learning opportunities associated to GVC integration, historical involvement of national States brings up the debate about technology as a central aspect of interstate disputes. In this sense, technology is seen as part of military modernization before being also used in civil contexts, what presupposes its role for national security and productive autonomy strategies. From this outlook, it is important to consider it as an asset that, incorporated in sophisticated machinery, can be the target of state policies besides the protection provided by intellectual property regimes, such as in export controls and inward-investment restrictions.

Keywords: global value chains, innovation systems, intellectual monopoly, technological development

Procedia PDF Downloads 82
1532 Measures for Limiting Corruption upon Migration Wave in Europe

Authors: Jordan Georgiev Deliversky

Abstract:

Fight against migrant smuggling has been put as a priority issues at the European Union policy agenda for more than a decade. The trafficked person, who has been targeted as the object of criminal exploitation, is specifically unique for human trafficking. Generally, the beginning of human trafficking activities is related to profit from the victim’s exploitation. The objective of this paper is to present measures that could result in the limitation of corruption mainly through analyzing the existing legislation framework against corruption in Europe. The analysis is focused on exploring the multiple origins of factors influencing migration processes in Europe, as corruption could be characterized as one of the most significant reasons for refugees to flee their countries. The main results show that law enforcement must turn the focus on the financing of the organized crime groups that are involved in migrant smuggling activities. Corruption has a significant role in managing smuggling operations and in particular when criminal organizations and networks are involved. Illegal migrants and refugees usually represent significant sources of additional income for officials involved in the process of boarding protection and immigration control within the European Union borders.

Keywords: corruption, influence, human smuggling, legislation, migration

Procedia PDF Downloads 352
1531 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach

Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed

Abstract:

Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.

Keywords: Learning Management Tool, social networking, education, Malaysia

Procedia PDF Downloads 427
1530 Climate Risk Perception and Trust – Presence of a Social Trap for Willingness to Act in Favour of Climate Mitigation and Support for Renewables: A Cross-sectional Study of Four European Countries

Authors: Lana Singleton

Abstract:

Achieving a sufficient global solution to climate change seems elusive through disappointing climate agreements and lack of cooperation. However, is this reluctance of coordination deep rooted on a more individual, societal level within countries due to a fundamental lack of social and institutional trust? The risks of climate change are illustrious and widely accepted, yet responses on an individual level are also largely inadequate. This research looks to further investigate types of trust, risk perception of climate change, and their interaction to build a greater understanding of whether a social trap (Rothstein, 2005) – where an absence of trust can overwhelm an individuals’ risk perception and result in minimal action despite knowing the dangers of no action – exists and where it is more prevalent. Presence of the social trap will be analysed for willingness to act in favour of climate change mitigation as well as attitude (acceptance) of different types of renewable energy forms. Using probit models with cross-sectional survey data on four developed European countries (UK, France, Germany, and Norway), we find evidence of the social trap in the aggregated data model, which highlights the importance of social trust regarding willingness to act in favour of climate mitigation as there is a high probability of action regardless of risk perception of climate change when social trust is high. In contrast, the same is not true for renewables, as interactions were mainly insignificant, although there were interesting findings involving institutional trust, gender, and country specific results for particular renewables.

Keywords: climate risk, renewables, risk perception, social trap, trust, willingness to act

Procedia PDF Downloads 96
1529 Study of Large-Scale Atmospheric Convection over the Tropical Indian Ocean and Its Association with Oceanic Variables

Authors: Supriya Manikrao Ovhal

Abstract:

In India, the summer monsoon rainfall occurs owing to large scale convection with reference to continental ITCZ. It was found that convection over tropical ocean increases with SST from 26 to 28 degree C, and when SST is above 29 degree C, it sharply decreases for warm pool areas of Indian and for monsoon areas of West Pacific Ocean. The reduction in convection can be influenced by large scale subsidence forced by nearby or remotely generated deep convection, thus it was observed that under the influence of strong large scale rising motion, convection does not decreases but increases monotonically with SST even if SST value is higher than 29.5 degree C. Since convection is related to SST gradient, that helps to generate low level moisture convergence and upward vertical motion in the atmosphere. Strong wind fields like cross equatorial low level jet stream on equator ward side of the warm pool are produced due to convection initiated by SST gradient. Areas having maximum SST have low SST gradient, and that result in feeble convection. Hence it is imperative to mention that the oceanic role (other than SST) could be prominent in influencing large Scale Atmospheric convection. Since warm oceanic surface somewhere or the other contributes to penetrate the heat radiation to the subsurface of the ocean, and as there is no studies seen related to oceanic subsurface role in large Scale Atmospheric convection, in the present study, we are concentrating on the oceanic subsurface contribution in large Scale Atmospheric convection by considering the SST gradient, mixed layer depth (MLD), thermocline, barrier layer. The present study examines the probable role of subsurface ocean parameters in influencing convection.

Keywords: sst, d20, olr, wind

Procedia PDF Downloads 93
1528 Toxic Ingredients Contained in Our Cosmetics

Authors: El Alia Boularas, H. Bekkar, H. Larachi, H. Rezk-kallah

Abstract:

Introduction: Notwithstanding cosmetics are used in life every day, these products are not all innocuous and harmless, as they may contain ingredients responsible for allergic reactions and, possibly, for other health problems. Additionally, environmental pollution should be taken into account. Thus, it is time to investigate what is ‘hidden behind beauty’. Aims: 1.To investigate prevalence of 13 chemical ingredients in cosmetics being object of concern, which the Algerians use regularly. 2.To know the profile of questioned consumers and describe their opinion on cosmetics. Methods: The survey was carried out in year 2013 over a period of 3 months, among Algerian Internet users having an e-mail address or a Facebook account.The study investigated 13 chemical agents showing health and environmental problems, selected after analysis of the recent studies published on the subject, the lists of national and international regulatory references on chemical hazards, and querying the database Skin Deep presented by the Environmental Working Group. Results: 300 people distributed all over the Algerian territory participated in the survey, providing information about 731 cosmetics; 86% aged from 20 to 39 years, with a sex ratio=0,27. A percentage of 43% of the analyzed cosmetics contained at least one of the 13 toxic ingredients. The targeted ingredient that has been most frequently reported was ‘perfume’ followed by parabens and PEG.85% of the participants declared that cosmetics ‘can contain toxic substances’, 27% asserted that they verify regularly the list of ingredients when they buy cosmetics, 61% said that they try to avoid the toxic ingredients, among whom 24 % were more vigilant on the presence of parabens, 95% were in favour of the strengthening of the Algerian laws on cosmetics. Conclusion: The results of the survey provide the indication of a widespread presence of toxic chemical ingredients in personal care products that Algerians use daily.

Keywords: Algerians consumers, cosmetics, survey, toxic ingredients

Procedia PDF Downloads 277
1527 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 31
1526 Investigating the Effect of Brand Equity on Competitive Advantage in the Banking Industry

Authors: Rohollah Asadian Kohestani, Nazanin Sedghi

Abstract:

As the number of banks and financial institutions working in Iran has been significantly increased, the attracting and retaining customers and encouraging them to continually use the modern banking services have been important and vital issues. Therefore, there would be a serious competition without a deep perception of consumers and fitness of banking services with their needs in the current economic conditions of Iran. It should be noted that concepts such as 'brand equity' is defined based on the view of consumers; however, it is also focused by shareholders, competitors and other beneficiaries of a firm in addition to bank and its consumers. This study examines the impact of brand equity on the competitive advantage in the banking industry as intensive competition between brands of different banks leads to pay more attention to the brands. This research is based on the Aaker’s model examining the impact of four dimensions of brand equity on the competitive advantage of private banks in Behshahr city. Moreover, conducting an applied research and data analysis has been carried out by a descriptive method. Data collection was done using literature review and questionnaire. A 'simple random' methodology was selected for sampling staff of banks while sampling methodology to select consumers of banks was the distribution of questionnaire between staff and consumers of five private banks including Tejarat, Mellat, Refah K., Ghavamin and, Tose’e Ta’avon banks. Results show that there is a significant relationship between brand equity and their competitive advantage. In this research, software of SPSS 16 and LISREL 8.5, as well as different methods of descriptive inferential statistics for analyzing data and test hypotheses, were employed.

Keywords: brand awareness, brand loyalty, brand equity, competitive advantage

Procedia PDF Downloads 141
1525 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 146
1524 Determinants of the Welfare of Itinerant Palm Oil Marketers in Akwa Ibom State, Nigeria

Authors: Obasi Igwe Oscar, Udokure Ubong James, Echebiri Raphael Ndubuisi

Abstract:

The study examined the determinants of the welfare of itinerant palm oil marketers in Akwa Ibom State, Nigeria. Multistage sampling techniques were adopted to select 120 itinerant palm oil marketers for the study. Primary data were obtained using a structured questionnaire. Data were analyzed using the cost and returns formula and multiple regression model. Results showed that itinerant palm oil marketing was profitable and 57.39% efficient. The respondents' monthly expenditure of N111,787.90 on food and non-food items indicated that they live above the extreme poverty threshold of $2.15 per person per day, with a daily spending of over $2. Net income (P<0.05), age (P<0.01), educational level (P<0.01), household size (P<0.01), credit amount (P<0.01), market information (P<0.05), amount of tax paid (P<0.01) and the level of market participation (P<0.05) were the significant determinants of the welfare of itinerant traders in the study area. The study recommended that government and non-governmental organizations should make available marketing facilities and enhance transportation networks to reduce inefficiencies and lower transaction costs for itinerant palm oil traders in Akwa Ibom state.

Keywords: determinants, welfare, itinerant, palm oil, marketers

Procedia PDF Downloads 33
1523 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 26
1522 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 148
1521 Flow-Oriented Incentive Spirometry in the Reversal of Diaphragmatic Dysfunction in Bariatric Surgery Postoperative Period

Authors: Eli Maria Forti-Pazzianotto, Carolina Moraes Da Costa, Daniela Faleiros Berteli Merino, Maura Rigoldi Simões Da Rocha, Irineu Rasera-Junior

Abstract:

There is no conclusive evidence to support the use of one type or brand of incentive espirometry over others. The decision as to which equipment is best, have being based on empirical assessment of patient acceptance, ease of use, and cost. The aim was to evaluate the effects of use of two methodologies of breathing exercises, performed by flow-oriented incentive spirometry, in the reversal of diaphragmatic dysfunction in postoperative bariatric surgery. 38 morbid obese women were selected. Respiratory muscle strength was evaluated through the nasal inspiratory pressure (NIP), and the respiratory muscles endurance, through incremental test by measurement of sustained maximal inspiratory pressure (SMIP). They were randomized in 2 groups: 1- Respiron® Classic (RC) the inspirations were slow, deep and sustained for as long as possible (5 sec). 2- Respiron® Athletic1 (RA1) - the inspirations were explosive, quick and intense, raising balls by the explosive way. 6 sets of 15 repetitions with intervals of 30 to 60 seconds were performed in groups. At the end of the intervention program (second PO), the volunteers were reevaluated. The groups were homogeneous with regard to initial assessment. However on reevaluating there was a significant decline of the variable PIN (p= < 0.0001) and SMIP (p=0.0004) in RC. In the RA1 group there was a maintenance of SMIP (p=0.5076) after surgery. The use of the Respiron Athletic 1, as well as the methodology of application used, can contribute positively to preserve the inspiratory muscle endurance and improve the diaphragmatic dysfunction in postoperative period.

Keywords: bariatric surgery, incentive spirometry, respiratory muscle, physiotherapy

Procedia PDF Downloads 373
1520 Intrabody Communication Using Different Ground Configurations in Digital Door Lock

Authors: Daewook Kim, Gilwon Yoon

Abstract:

Intrabody communication (IBC) is a new way of transferring data using human body as a medium. Minute current can travel though human body without any harm. IBC can remove electrical wires for human area network. IBC can be also a secure communication network system unlike wireless networks which can be accessed by anyone with bad intentions. One of the IBC systems is based on frequency shift keying modulation where individual data are transmitted to the external devices for the purpose of secure access such as digital door lock. It was found that the quality of IBC data transmission was heavily dependent on ground configurations of electronic circuits. Reliable IBC transmissions were not possible when both of the transmitter and receiver used batteries as circuit power source. Transmission was reliable when power supplies were used as power source for both transmitting and receiving sites because the common ground was established through the grounds of instruments such as power supply and oscilloscope. This was due to transmission dipole size and the ground effects of floor and AC power line. If one site used battery as power source and the other site used the AC power as circuit power source, transmission was possible.

Keywords: frequency shift keying, ground, intrabody, communication, door lock

Procedia PDF Downloads 420
1519 Experimental Study of Flow Characteristics for a Cylinder with Respect to Attached Flexible Strip Body of Various Reynolds Number

Authors: S. Teksin, S. Yayla

Abstract:

The aim of the present study was to investigate details of flow structure in downstream of a circular cylinder base mounted on a flat surface in a rectangular duct with the dimensions of 8000 x 1000 x 750 mm in deep water flow for the Reynolds number 2500, 5000 and 7500. A flexible strip was attached to behind the cylinder and compared the bare body. Also, it was analyzed that how boundary layer affects the structure of flow around the cylinder. Diameter of the cylinder was 60 mm and the length of the flexible splitter plate which had a certain modulus of elasticity was 150 mm (L/D=2.5). Time-averaged velocity vectors, vortex contours, streamwise and transverse velocity components were investigated via Particle Image Velocimetry (PIV). Velocity vectors and vortex contours were displayed through the sections in which boundary layer effect was not present. On the other hand, streamwise and transverse velocity components were monitored for both cases, i.e. with and without boundary layer effect. Experiment results showed that the vortex formation occured in a larger area for L/D=2.5 and the point where the vortex was maximum from the base of the cylinder was shifted. Streamwise and transverse velocity component contours were symmetrical with reference to the center of the cylinder for all cases. All Froud numbers based on the Reynolds numbers were quite smaller than 1. The flow characteristics of velocity component values of attached circular cylinder arrangement decreased approximately twenty five percent comparing to bare cylinder case.

Keywords: partical image velocimetry, elastic plate, cylinder, flow structure

Procedia PDF Downloads 315
1518 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
1517 Influence of the Cooking Technique on the Iodine Content of Frozen Hake

Authors: F. Deng, R. Sanchez, A. Beltran, S. Maestre

Abstract:

The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved.

Keywords: cooking process, ICP-MS, iodine, hake

Procedia PDF Downloads 142
1516 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model

Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu

Abstract:

The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.

Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR

Procedia PDF Downloads 145
1515 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 469
1514 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 66
1513 Personality Across Different Castes: A Quantitative Study of Three Castes

Authors: Huma Aly, Caramel Rodger, Saman Zafar

Abstract:

The present study explored the role of caste system in determining and understanding various personality characteristics related to different castes. It analyzed various personality characteristics of Arains, Jutts and Sheikhs caste of Pakistan. Reasons for the emphasis on within caste marriage in relation to personality characteristics were identified. In the present study a sample of 200 unmarried students were taken from different institutes of Lahore, Pakistan. 117 students were taken from Fast University and 83 from LUMS (Lahore University of Management and Sciences) on the basis of purposive and convenience sampling. 76 Arains, 59 Sheikhs and 65 Jutts were taken. Non-probability purposive sampling, quantitative research method, big five personality scale were used. Kruskal Wallis test was used as three independent groups were taken in the study. Results revealed various personality characteristics associated with different castes namely Arain, Jutts and Sheikhs. Individuals belonging to Jutts caste were reported to be high on being talkative, findings faults, doing thorough job, being depressed, reservedness, quarrelling, reliable, tensed, deep thinker, worrying a lot, imaginative, lazy, inventive, assertive, cold aloof, preserved and rude. Arains were reported to be original, helpful, careless,relaxed, curious, enthusiastic, forgiving, quiet, trusting, moody, shy, retaining anger, routinely working, planners, nervous, playing with ideas, artistic, cooperative, easily distracted and sophisticated. Lastly, Sheikhs were reported to be energetic, disorganized, stable. This study will play a significant part in changing the traditional viewpoint of majority of elders of our society who still have immense association with the caste they belong to.

Keywords: castes, personality, Arains, Jutts, Sheikhs, Pakistan

Procedia PDF Downloads 264
1512 Harmonics and Flicker Levels at Substation

Authors: Ali Borhani Manesh, Sirus Mohammadi

Abstract:

Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.

Keywords: power quality, harmonics, flicker, measurement, substation

Procedia PDF Downloads 697
1511 Self-Disclosure of Location: Influences of Personality Traits, Intrinsic Motivations and Extrinsic Motivations

Authors: Chechen Liao, Sheng Yi Lin

Abstract:

With the popularity of smartphone usage and the flourish of social networks, many people began to use the 'check-in' functions to share their location information and days of live and self-disclosure. In order to increase exposure and awareness, some stores provide discounts and other benefits to attract consumers to 'check-in' in their stores. The purpose of this study was to investigate whether personality traits, intrinsic motivations, extrinsic motivations, and privacy concerns would affect self-disclosure of location for consumers. Research data were collected from 407 individuals that have used Facebook check-in in Taiwan. This study used SmartPLS 2.0 structural equation modeling to validate the model. The results show that information sharing, information storage, enjoyment, self-presentation, get a feedback, economic reward, and keep up with trends had significant positive effects on self-disclosure. While extroversion and openness to use have significant positive effects on self-disclosure, conscientiousness and privacy concerns have significant negative effects on self-disclosure. The results of the study provide academic and practical implications for the future growth of location-based self-disclosure.

Keywords: check-in, extrinsic motivation, intrinsic motivation, personality trait, self-disclosure

Procedia PDF Downloads 171
1510 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories

Authors: Heba M. Wagih, Hoda M. O. Mokhtar

Abstract:

Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.

Keywords: human behavior trajectory, location-based social network, ontology, social network

Procedia PDF Downloads 453
1509 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior

Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos

Abstract:

Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.

Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving

Procedia PDF Downloads 63
1508 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems

Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi

Abstract:

The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.

Keywords: mobile databases, synchronization, cache, response time

Procedia PDF Downloads 407
1507 Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation

Authors: Madhan Vinu, Yue-Chun Jiang, Yi-Feng Lin, Chia-Her Lin

Abstract:

An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification.

Keywords: metal-organic framework, microporous materials, separation, chitosan membranes

Procedia PDF Downloads 222
1506 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 23