Search results for: soil organic matter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6146

Search results for: soil organic matter

3146 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 206
3145 Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan

Authors: Hui-Chen Tsai, Chien-Jen Ho, Bo-Wei Power Liang, Ying Shen, Yi-Hsin Lai

Abstract:

Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken.

Keywords: screening, ecological risk assessment, ecological impact levels, risk management

Procedia PDF Downloads 121
3144 Assessing the Socio-Economic Problems and Environmental Implications of Green Revolution In Uttar Pradesh, India

Authors: Naima Umar

Abstract:

Mid-1960’s has been landmark in the history of Indian agriculture. It was in 1966-67 when a New Agricultural Strategy was put into practice to tide over chronic shortages of food grains in the country. This strategy adopted was the use High-Yielding Varieties (HYV) of seeds (wheat and rice), which was popularly known as the Green Revolution. This phase of agricultural development has saved us from hunger and starvation and made the peasants more confident than ever before, but it has also created a number of socio-economic and environmental implications such as the reduction in area under forest, salinization, waterlogging, soil erosion, lowering of underground water table, soil, water and air pollution, decline in soil fertility, silting of rivers and emergence of several diseases and health hazards. The state of Uttar Pradesh in the north is bounded by the country of Nepal, the states of Uttrakhand on the northwest, Haryana on the west, Rajasthan on the southwest, Madhya Pradesh on the south and southwest, and Bihar on the east. It is situated between 23052´N and 31028´N latitudes and 7703´ and 84039´E longitudes. It is the fifth largest state of the country in terms of area, and first in terms of population. Forming the part of Ganga plain the state is crossed by a number of rivers which originate from the snowy peaks of Himalayas. The fertile plain of the Ganga has led to a high concentration of population with high density and the dominance of agriculture as an economic activity. Present paper highlights the negative impact of new agricultural technology on health of the people and environment and will attempt to find out factors which are responsible for these implications. Karl Pearson’s Correlation coefficient technique has been applied by selecting 1 dependent variable (i.e. Productivity Index) and some independent variables which may impact crop productivity in the districts of the state. These variables have categorized as: X1 (Cropping Intensity), X2 (Net irrigated area), X3 (Canal Irrigated area), X4 (Tube-well Irrigated area), X5 (Irrigated area by other sources), X6 (Consumption of chemical fertilizers (NPK) Kg. /ha.), X7 (Number of wooden plough), X8 (Number of iron plough), X9 (Number of harrows and cultivators), X10 (Number of thresher machines), X11(Number of sprayers), X12 (Number of sowing instruments), X13 (Number of tractors) and X14 (Consumption of insecticides and pesticides (in Kg. /000 ha.). The entire data during 2001-2005 and 2006- 2010 have been taken and 5 years average value is taken into consideration, based on secondary sources obtained from various government, organizations, master plan report, economic abstracts, district census handbooks and village and town directories etc,. put on a standard computer programmed SPSS and the results obtained have been properly tabulated.

Keywords: agricultural technology, environmental implications, health hazards, socio-economic problems

Procedia PDF Downloads 291
3143 Regeneration Nature of Rumex Species Root Fragment as Affected by Desiccation

Authors: Khalid Alshallash

Abstract:

Small fragments of the roots of some Rumex species including R. obtusifolius and R. crispus have been found to regenerate readily, contributing to the severity of infestations by these very common, widespread and difficult to control perennial weeds of agricultural crops and grasslands. Their root fragments are usually created during routine agricultural practices. We found that fresh root fragments of both species containing 65-70 % of moisture, progressively lose their moisture content when desiccated under controlled growth room conditions matching summer weather of southeast England, with the greatest reduction occurring in the first 48 hours. Probability of shoot emergence and the time taken for emergence in glasshouse conditions were also reduced significantly by desiccation, with R. obtusifolius least affected up to 48-hour. However, the effects converged after 120 hours. In contrast, R. obtusifolius was significantly slower to emerge after up to 48 hours desiccation, again effects converging after longer periods, R. crispus entirely failed to emerge at 120 hours. The dry weight of emerged shoots was not significantly different between the species, until desiccated for 96 hours when R. obtusifolius was significantly reduced. At 120 hours, R. obtusifolius did not emerge. In outdoor trials, desiccation for 24 or 48 hours had less effect on emergence when planted at the soil surface or up to 10 cm of depth, compared to deeper plantings. In both species, emergence was significantly lower when desiccated fragments were planted at 15 or 20 cm. Time taken for emergence was not significantly different between the species until planted at 15 or 20 cm when R. obtusifolius was slower than R. crispus and reduced further by increasing desiccation. Similar variation in effects of increasing soil depth interacting with increasing desiccation was found in reductions in dry weight, the number of tillers and leaf area, with R obtusifolius generally but not exclusively better able to withstand more extreme trial conditions. Our findings suggest that infestations of these highly troublesome weeds may be partly controlled by appropriate agricultural practices, notably exposing cut fragments to drying environmental conditions followed by deep burial.

Keywords: regeneration, root fragment, rumex crispus, rumex obtusifolius

Procedia PDF Downloads 83
3142 Water Soluble Chitosan Derivatives via the Freeze Concentration Technique

Authors: Senem Avaz, Alpay Taralp

Abstract:

Chitosan has been an attractive biopolymer for decades, but its processibility is lowered by its poor solubility, especially in physiological pH values. Freeze concentrated reactions of Chitosan with several organic acids including acrylic, citraconic, itaconic, and maleic acid revealed improved solubility and morphological properties. Solubility traits were assessed with a modified ninhydrin test. Chitosan derivatives were characterized by ATR-FTIR and morphological characteristics were determined by SEM. This study is a unique approach to chemically modify Chitosan to enhance water solubility.

Keywords: chitosan, freeze concentration, frozen reactions, ninhydrin test, water soluble chitosan

Procedia PDF Downloads 416
3141 Design to Cryogenic System for Dilution Refrigerator with Cavity and Superconducting Magnet

Authors: Ki Woong Lee

Abstract:

The Center for Axion and Precision Physics Research is studying the search for dark matter using 12 tesla superconducting magnets. A dilution refrigerator is being used for search experiments, and superconducting magnets, superconducting cavities. The dilution refrigerator requires a stable cryogenic environment using liquid helium. Accordingly, a cryogenic system for a stable supply of liquid helium is to be established. This cryogenic system includes the liquefying, supply, storage, and purification of liquid helium. This article presents the basic design, construction, and operation plans for building cryogenic systems.

Keywords: cryogenic system, dilution refrigerator, superconducting magnet, helium recovery system

Procedia PDF Downloads 106
3140 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 98
3139 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia

Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay

Abstract:

Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.

Keywords: AquaCrop model, calibration, validation, simulation

Procedia PDF Downloads 43
3138 Symbiotic Functioning, Photosynthetic Induction and Characterisation of Rhizobia Associated with Groundnut, Jack Bean and Soybean from Eswatini

Authors: Zanele D. Ngwenya, Mustapha Mohammed, Felix D. Dakora

Abstract:

Legumes are a major source of biological nitrogen, and therefore play a crucial role in maintaining soil productivity in smallholder agriculture in southern Africa. Through their ability to fix atmospheric nitrogen in root nodules, legumes are a better option for sustainable nitrogen supply in cropping systems than chemical fertilisers. For decades, farmers have been highly receptive to the use of rhizobial inoculants as a source of nitrogen due mainly to the availability of elite rhizobial strains at a much lower compared to chemical fertilisers. To improve the efficiency of the legume-rhizobia symbiosis in African soils would require the use of highly effective rhizobia capable of nodulating a wide range of host plants. This study assessed the morphogenetic diversity, photosynthetic functioning and relative symbiotic effectiveness (RSE) of groundnut, jack bean and soybean microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. According to the manufacturer's instructions, rhizobial isolates were cultured in yeast-mannitol (YM) broth until the late log phase and the bacterial genomic DNA was extracted using GenElute bacterial genomic DNA kit. The extracted DNA was subjected to enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and a dendrogram constructed from the band patterns to assess rhizobial diversity. To assess the N2-fixing efficiency of the authenticated rhizobia, photosynthetic rates (A), stomatal conductance (gs), and transpiration rates (E) were measured at flowering for plants inoculated with the test isolates. The plants were then harvested for nodulation assessment and measurement of plant growth as shoot biomass. The results of ERIC-PCR fingerprinting revealed the presence of high genetic diversity among the microsymbionts nodulating each of the three test legumes, with many of them showing less than 70% ERIC-PCR relatedness. The dendrogram generated from ERIC-PCR profiles grouped the groundnut isolates into 5 major clusters, while the jack bean and soybean isolates were grouped into 6 and 7 major clusters, respectively. Furthermore, the isolates also elicited variable nodule number per plant, nodule dry matter, shoot biomass and photosynthetic rates in their respective host plants under glasshouse conditions. Of the groundnut isolates tested, 38% recorded high relative symbiotic effectiveness (RSE >80), while 55% of the jack bean isolates and 93% of the soybean isolates recorded high RSE (>80) compared to the commercial Bradyrhizobium strains. About 13%, 27% and 83% of the top N₂-fixing groundnut, jack bean and soybean isolates, respectively, elicited much higher relative symbiotic efficiency (RSE) than the commercial strain, suggesting their potential for use in inoculant production after field testing. There was a tendency for both low and high N₂-fixing isolates to group together in the dendrogram from ERIC-PCR profiles, which suggests that RSE can differ significantly among closely related microsymbionts.

Keywords: genetic diversity, relative symbiotic effectiveness, inoculant, N₂-fixing

Procedia PDF Downloads 198
3137 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 237
3136 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 351
3135 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture

Authors: Zakia Hbellaq

Abstract:

The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.

Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants

Procedia PDF Downloads 135
3134 Integrated Livestock and Cropping System and Sustainable Rural Development in India: A Case Study

Authors: Nizamuddin Khan

Abstract:

Integrated livestock and cropping system is very old agricultural practice since antiquity. It is an eco-friendly and sustainable farming system in which both the resources are optimally and rationally utilized through the recycling and re-utilization of their by-products. Indian farmers follow in- farm integrated farming system unlike in developed countries where both farm and off-farm system prevailed. The data on different components of the integrated farming system is very limited and that too is not widely available in published form. The primary source is the only option for understanding the mechanism, process, evaluation and performance of integrated livestock cropping system. Researcher generated data through the field survey of sampled respondents from sampled villages from Bulandshahr district of Uttar Pradesh. The present paper aims to understand the component group of system, degree, and level of integration, level of generation of employment, income, improvement in farm ecology, the economic viability of farmers and check in rural-urban migration. The study revealed that area witnessed intra farm integration in which both livestock and cultivation of crops take place on the same farm. Buffalo, goat, and poultry are common components of integration. Wheat, paddy, sugarcane and horticulture are among the crops. The farmers are getting 25% benefit more than those who do not follow the integrated system. Livestock husbandry provides employment and income through the year, especially during agriculture offseason. 80% of farmers viewed that approximately 35% of the total expenditure incurred is met from the livestock sector. Landless, marginal and small farmers are highly benefited from agricultural integration. About 70% of farmers acknowledged that using wastes of animals and crops the soil ecology is significantly maintained. Further, the integrated farming system is helpful in reducing rural to urban migration. An incentive with credit facilities, assured marketing, technological aid and government support is urgently needed for sustainable development of agriculture and farmers.

Keywords: integrated, recycle, employment, soil ecology, sustainability

Procedia PDF Downloads 153
3133 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content

Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo

Abstract:

Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.

Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes

Procedia PDF Downloads 136
3132 The Mediator as an Evaluator: An Analysis of Evaluation as a Method for the Lawyer’s Reform to Mediation

Authors: Dionne Coley B. A.

Abstract:

The role of a lawyer as a mediator is to be impartial in assisting parties to arrive at a decision. This decision should be made in a voluntary and mutually acceptable manner where the mediator encourages the parties to communicate, identify their interests, assess risks and consider settlement options. One of the key components to mediation is impartiality where mediators are to have a duty to remain impartial throughout the course of mediation and uphold an “objective” demeanor with both parties. The question is whether a mediator should take on evaluative role while encouraging the parties to come to a decision. This means that the mediator would not only encourage dialogue and responses between the parties but also assess and provide an opinion on the matter. This paper submits the argument that the role of a mediator should not be one of evaluation as this does not encourage the dialogue, process or desired outcomes associated with mediation.

Keywords: evaluation, lawyer, mediation, reform

Procedia PDF Downloads 409
3131 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 137
3130 Dynamic Analysis of Turbine Foundation

Authors: Mogens Saberi

Abstract:

This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences.

Keywords: dynamic turbine design, harmonic response analysis, practical turbine design experience, concrete foundation

Procedia PDF Downloads 303
3129 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 176
3128 Modeling Thin Shell Structures by a New Flat Shell Finite Element

Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid

Abstract:

In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.

Keywords: finite element, flat shell element, strain based approach, static condensation

Procedia PDF Downloads 409
3127 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.

Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography

Procedia PDF Downloads 170
3126 Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity

Authors: Supriyono, Sumardiyono, Puti Pertiwi

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene.

Keywords: antioxidant, , beta carotene, , crude palm oil, , DPPH, , tocopherol

Procedia PDF Downloads 271
3125 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 211
3124 Dielectrophoretic Characterization of Tin Oxide Nanowires for Biotechnology Application

Authors: Ahmad Sabry Mohamad, Kai F. Hoettges, Michael Pycraft Hughes

Abstract:

This study investigates nanowires using Dielectrophoresis (DEP) in non-aqueous suspension of Tin (IV) Oxide (SnO2) nanoparticles dispersed in N,N-dimenthylformamide (DMF). The self assembly of nanowires in DEP impedance spectroscopy can be determined. In this work, dielectrophoretic method was used to measure non-organic molecules for estimating the permittivity and conductivity characteristic of the nanowires. As in aqueous such as salt solution has been dominating the transport of SnO2, which are the wire growth threshold, depend on applied voltage. While DEP assembly of nanowires depend on applied frequency, the applications of dielectrophoretic collection are measured using impedance spectroscopy.

Keywords: dielectrophoresis, impedance spectroscopy, nanowires, N, N-dimenthylformamide, SnO2

Procedia PDF Downloads 641
3123 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 359
3122 Ruminal VFA of Beef Fed Different Protein

Authors: P. Paengkoum, S. C. Chen, S. Paengkoum

Abstract:

Six male growing Thai-indigenous beef cattle with body weight (BW) of 154±13.2 kg were randomly assigned in replicated 3×3 Latin square design, and fed with different levels of crude protein (CP) in total mixed ration (TMR) diets. CP levels in diets were 4.3%, 7.3% and 10.3% base on dry matter (DM). Ruminal ammonia nitrogen (NH3-N) and blood urea nitrogen (BUN) concentrations increased (P<0.01) with increasing CP levels. Moreover, there is a positive relationship between BUN and ruminal NH3-N. Rumen pH, total volatile fatty acid (VFA), molar proportions of acetate, propionate and butyrate were not affected by CP levels (P>0.05).

Keywords: Thai-indigenous beef cattle, crude protein, volatile fatty acid (VFA), total mixed ration (TMR) diets

Procedia PDF Downloads 265
3121 Influence of Probiotics on Dairy Cows Diet

Authors: V. A. Vieira, M. P. Sforcini, V. Endo, G. C. Magioni, M. D. S. Oliveira

Abstract:

The main goal of this paper was evaluate the effect of diets containing different levels of probiotic on performance and milk composition of lactating cows. Eight Holstein cows were distributed in two 4x4 Latin square. The diets were based on corn silage, concentrate and the treatment (0, 3, 6 or 9 grams of probiotic/animal/day). It was evaluated the dry matter intake of nutrients, milk yield and composition. The use of probiotics did not affect the nutrient intake (p>0.05) neither the daily milk production or corrected to 4% fat (p>0.05). However, it was observed that there was a significant fall in milk composition with higher levels of probiotics supplementation. These results emphasize the need of further studies with different experimental designs or improve the number of Latin square with longer periods of adaptation.

Keywords: dairy cow, milk composition, probiotics, daily milk production

Procedia PDF Downloads 249
3120 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space

Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson

Abstract:

Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.

Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling

Procedia PDF Downloads 222
3119 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 146
3118 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa

Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh

Abstract:

Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.

Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health

Procedia PDF Downloads 136
3117 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 77