Search results for: self-regulated learning theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11280

Search results for: self-regulated learning theory

8280 From Equations to Structures: Linking Abstract Algebra and High-School Algebra for Secondary School Teachers

Authors: J. Shamash

Abstract:

The high-school curriculum in algebra deals mainly with the solution of different types of equations. However, modern algebra has a completely different viewpoint and is concerned with algebraic structures and operations. A question then arises: What might be the relevance and contribution of an abstract algebra course for developing expertise and mathematical perspective in secondary school mathematics instruction? This is the focus of this paper. The course Algebra: From Equations to Structures is a carefully designed abstract algebra course for Israeli secondary school mathematics teachers. The course provides an introduction to algebraic structures and modern abstract algebra, and links abstract algebra to the high-school curriculum in algebra. It follows the historical attempts of mathematicians to solve polynomial equations of higher degrees, attempts which resulted in the development of group theory and field theory by Galois and Abel. In other words, algebraic structures grew out of a need to solve certain problems, and proved to be a much more fruitful way of viewing them. This theorems in both group theory and field theory. Along the historical ‘journey’, many other major results in algebra in the past 150 years are introduced, and recent directions that current research in algebra is taking are highlighted. This course is part of a unique master’s program – the Rothschild-Weizmann Program – offered by the Weizmann Institute of Science, especially designed for practicing Israeli secondary school teachers. A major component of the program comprises mathematical studies tailored for the students at the program. The rationale and structure of the course Algebra: From Equations to Structures are described, and its relevance to teaching school algebra is examined by analyzing three kinds of data sources. The first are position papers written by the participating teachers regarding the relevance of advanced mathematics studies to expertise in classroom instruction. The second data source are didactic materials designed by the participating teachers in which they connected the mathematics learned in the mathematics courses to the school curriculum and teaching. The third date source are final projects carried out by the teachers based on material learned in the course.

Keywords: abstract algebra , linking abstract algebra and school mathematics, school algebra, secondary school mathematics, teacher professional development

Procedia PDF Downloads 146
8279 Development of National Education Policy-2020 Aligned Student-Centric-Outcome-Based-Curriculum of Engineering Programmes of Polytechnics in India: Faculty Preparedness and Challenges Ahead

Authors: Jagannath P. Tegar

Abstract:

The new National Education Policy (NEP) 2020 of Govt. of India has envisaged a major overhaul of the education system of India, in particular, the revamping of the Curriculum of Higher Education. In this process, the faculty members of the Indian universities and institutions have a challenging role in developing the curriculum, which is a shift from the traditional (content-based) curriculum to a student-centric- outcome-based Curriculum (SC-OBC) to be implemented in all of the Universities and institutions. The efforts and initiatives on the design and implementation of SC-OBC are remarkable in the engineering and technical education landscape of the country, but it is still in its early stages and many more steps are needed for the successful adaptation in every level of Higher Education. The premier institute of Govt. of India (NITTTR, Bhopal) has trained and developed the capacity and capability among the teachers of Polytechnics on the design and development of Student Centric - Outcome Based Curriculum and also providing academic consultancy for reforming curriculum in line of NEP- 2020 envisions for the states such as Chhattisgarh, Bihar and Maharashtra to make them responsibly ready for such a new shift in Higher Education. This research-based paper is on three main aspects: 1) the level of acceptance and preparedness of teachers /faculty towards NEP-2020 and student-centred outcome-based learning. 2) the extent of implementing NEP-2020 and student-centered outcome-based learning at Indian institutions/ universities and 3) the challenges of implementing NEP-2020 and student-centered outcome-based learning outcome-based education in the Indian context. The paper content will inspire curriculum designers and developers to prepare SC-OBC that meets the specific needs of industry and society at large, which is intended in the NEP-2020 of Govt. of India

Keywords: outcome based curriculum, student centric learning, national education policy -2020, implementation of nep-2020. outcome based learning, higher education curriculum

Procedia PDF Downloads 81
8278 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior

Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn

Abstract:

Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.

Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior

Procedia PDF Downloads 193
8277 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 35
8276 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 8
8275 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 73
8274 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School

Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir

Abstract:

Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.

Keywords: mobile phone, academic performance, secondary level, international schools

Procedia PDF Downloads 87
8273 The Application of Computer and Technology in Language Teaching and Learning

Authors: Pouya Vakili

Abstract:

Since computers were first introduced into educational facilities, foreign language educators have been faced with the problem of integrating high-tech multimedia techniques into a traditional text-based curriculum. As studies of language teaching have pointed out, ‘Language teaching tends in practice to be eclectic…. There are not only exceptionally many paths and educational means for arriving at a given educational goal, but there are also many types of educational materials which can be used to achieve that goal’. For language educators who are trying to incorporate technology into their curricula, the choices seem endless. Yet the quantity, as well as the limitations, of available computer programs does not guarantee that these programs can be successfully integrated into a curriculum.

Keywords: curriculum, language teaching, learning, multimedia, technology

Procedia PDF Downloads 575
8272 Benefits of Using Social Media and Collaborative Online Platforms in PBL

Authors: Susanna Graziano, Lydia Krstic Ward

Abstract:

The purpose of this presentation is to demonstrate the steps of using multimedia and collaborative platforms in project-based learning. The presentation will demonstrate the stages of the learning project with various components of independent and collaborative learning, where students research the topic, share information, prepare a survey, use social media (Facebook, Instagram, WhasApp) and collaborative platforms (wikispaces.com and Google docs) to collect, analyze and process data, then produce reports and logos to be displayed as a final product. At the beginning of the presentation participants will answer a questionnaire about project based learning and share their experience on using social media, real–world project work and collaborative learning. Using a PPP, the presentation will walk participants through the steps of a completed project where tertiary education students are involved in putting together a multimedia campaign for safe driving in Kuwait. The research component of the project entails taking a holistic view on the problem of the high death rate in traffic accidents. The final goal of the project is to lead students to raise public awareness about the importance of safe driving. The project steps involve using the social media and collaborative platforms for collecting data and sharing the required materials to be used in the final product – a display of written reports, slogans and videos, as well as oral presentations. The same structure can be used to organize a multimedia campaign focusing on other issues, whilst scaffolding on students’ ability to brainstorm, retrieve information, organize it and engage in collaborative/ cooperative learning whilst being immersed in content-based learning as well as in authentic tasks. More specifically, the project we carried out at Box Hill College was a real-world one and involved a multimedia Campaign for Safe Driving since reckless driving is one of the major problems in the country. The idea for the whole project started by a presentation given by a board member of the Kuwaiti Society for Traffic Safety who was invited to college and spoke about: • Driving laws in the country, • What causes car accidents, • Driving safety tips. The principal goal of this project was to let students consider problems of traffic in Kuwait from different points of view. They also had to address the number and causes of accidents, evaluate the effectiveness of the local traffic law in order to send a warning about the importance of safe driving and, finally, suggest ways of its improvement. Benefits included: • Engagement, • Autonomy, • Motivation, • Content knowledge, • Language mastery, • Enhanced critical thinking, • Increased metacognitive awareness, • Improved social skills, • Authentic experience.

Keywords: social media, online learning platforms, collaborative platforms, project based learning

Procedia PDF Downloads 425
8271 The Impact of Job Meaningfulness on the Relationships between Job Autonomy, Supportive Organizational Climate, and Job Satisfaction

Authors: Sashank Nyapati, Laura Lorente-Prieto, Maria Peiro

Abstract:

The general objective of this study is to analyse the mediating role of meaningfulness in the relationships between job autonomy and job satisfaction and supportive organizational climate and job satisfaction. Theories such as the Job Characteristics Model, Conservation of Resources theory, as well as the Job Demands-Resources theory were used as theoretical framework. Data was obtained from the 5th European Working Conditions Survey (EWCS), and sample was composed of 1005 and 1000 workers from Spain and Portugal respectively. The analysis was conducted using the SOBEL Macro for SPSS (A multiple regression mediation model) developed by Preacher and Hayes in 2003. Results indicated that Meaningfulness partially mediates both the Job Autonomy-Job Satisfaction as well as the Supportive Organizational Climate-Job Satisfaction relationships. However, the percentages are large enough to draw substantial conclusions, especially that Job Meaningfulness plays an essential – if indirect – role in the amount of Satisfaction that one experiences at work. Some theoretical and practical implications are discussed.

Keywords: meaningfulness, job autonomy, supportive organizational climate, job satisfaction

Procedia PDF Downloads 536
8270 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 558
8269 A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces

Authors: Abas Mohsenzadeh, Mina Arya, Kim Bolton

Abstract:

Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results.

Keywords: BEP, DFT, hydrocarbon combustion, metal surfaces, TSS

Procedia PDF Downloads 257
8268 Reasons to Live - Positive Psychology and Self Determination Theory in the Prevention of Depression and Suicidal Ideation

Authors: Luiz Carlos Dias Lima De Oliveira

Abstract:

Psychology does not have the task of being confined only to the knowledge of losses, weaknesses or diseases, because it is necessary to give analogous dedication to the investigation of human virtues, efforts and aptitudes. The reasons for living with greater constancy and expressiveness act as a protective condition for risk behaviors, but with less constancy and expressiveness they can be a viable parameter of suicidal ideation or potential suicidal initiatives. In other words, Positive Psychology scientifically studies human strengths and virtues. In the same way, we refer to the basic psychological needs of the human being, according to the Theory of Self-Determination: the need for belonging, competence and autonomy to live the best possible life or the ability to make positive decisions in life. In this sense, following the assumptions of Positive Psychology, we raise the question of what are the reasons for living, seeking a way to draw attention to positive aspects of life.

Keywords: psychology, positive, self-determination, belonging, competence, autonomy, depression, suicide.

Procedia PDF Downloads 70
8267 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
8266 A Mixed Methods Study: Evaluation of Experiential Learning Techniques throughout a Nursing Curriculum to Promote Empathy

Authors: Joan Esper Kuhnly, Jess Holden, Lynn Shelley, Nicole Kuhnly

Abstract:

Empathy serves as a foundational nursing principle inherent in the nurse’s ability to form those relationships from which to care for patients. Evidence supports, including empathy in nursing and healthcare education, but there is limited data on what methods are effective to do so. Building evidence supports experiential and interactive learning methods to be effective for students to gain insight and perspective from a personalized experience. The purpose of this project is to evaluate learning activities designed to promote the attainment of empathic behaviors across 5 levels of the nursing curriculum. Quantitative analysis will be conducted on data from pre and post-learning activities using the Toronto Empathy Questionnaire. The main hypothesis, that simulation learning activities will increase empathy, will be examined using a repeated measures Analysis of Variance (ANOVA) on Pre and Post Toronto Empathy Questionnaire scores for three simulation activities (Stroke, Poverty, Dementia). Pearson product-moment correlations will be conducted to examine the relationships between continuous demographic variables, such as age, credits earned, and years practicing, with the dependent variable of interest, Post Test Toronto Empathy Scores. Krippendorff’s method of content analysis will be conducted to identify the quantitative incidence of empathic responses. The researchers will use Colaizzi’s descriptive phenomenological method to describe the students’ simulation experience and understand its impact on caring and empathy behaviors employing bracketing to maintain objectivity. The results will be presented, answering multiple research questions. The discussion will be relevant to results and educational pedagogy in the nursing curriculum as they relate to the attainment of empathic behaviors.

Keywords: curriculum, empathy, nursing, simulation

Procedia PDF Downloads 111
8265 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study

Authors: John Zanetich

Abstract:

Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.

Keywords: constructivism, knowledge management, tacit knowledge, social media

Procedia PDF Downloads 215
8264 Developing Digital Competencies in Aboriginal Students through University-College Partnerships

Authors: W. S. Barber, S. L. King

Abstract:

This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.

Keywords: aboriginal, college, competencies, digital, universities

Procedia PDF Downloads 215
8263 Strategies for Incorporating Intercultural Intelligence into Higher Education

Authors: Hyoshin Kim

Abstract:

Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.

Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education

Procedia PDF Downloads 211
8262 Culture Sensitization: Understanding German Culture by Learning German

Authors: Lakshmi Shenoy

Abstract:

In today’s era of Globalization, arises the need that students and professionals relocate temporarily or permanently to another country in order to pursue their respective academic and career goals. This involves not only learning the local language of the country but also integrating oneself into the native culture. This paper explains the method of understanding a nation’s culture through the study of its language. The method uses language not as a series of rules that connect words together but as a social practice in which one can actively participate. It emphasizes on how culture provides an environment in which languages can flourish and how culture dictates the interpretation of the language especially in case of German. This paper introduces language and culture as inseparable entities, as two sides of the same coin.

Keywords: language and culture, sociolinguistics, Ronald Wardhaugh, German

Procedia PDF Downloads 306
8261 Performance Assessment of Islamic Banks in the Light of Maqasid Al-Shariah

Authors: Asma Ammar

Abstract:

Being different in theory and practice from their conventional counterparts, this research aims to assess the performance of Islamic banks beyond the financial performance by emphasizing their ethical and social identity based on the higher purposes of Islamic law, namely Maqasid al-Shariah. Using Imam al-Ghazali’s theory of Maqasid al-Shariah and Sekaran’s (2000) method, we develop a Maqasid-based index including the five objectives of Shariah (preservation of life, religion, intellect, posterity, and wealth). Our sample covers 9 Islamic banks considered among the largest Islamic banks in the world. For the five years of study (2017-2021), our results reveal that the highest score is performed by Bank Muamalat while the least score is given to Dubai Islamic Bank. The overall Maqasid performance of the sample is unimpressive, indicating that there is a lack of achievement in Maqasid al-Shariah performance of Islamic banks. Consequently, serious measures should be taken by Islamic banks to improve their Maqasid performance and thus contribute effectively to the socio-economic development of the countries in which they operate.

Keywords: Maqasid al-Shariah, Maqasid al-Shariah index, Islamic banks, performance assessment

Procedia PDF Downloads 76
8260 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 94
8259 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 411
8258 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
8257 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 61
8256 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.

Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry

Procedia PDF Downloads 21
8255 Correlation between Consumer Knowledge of the Circular Economy and Consumer Behavior towards Its Application: A Canadian Exploratory Study

Authors: Christopher E. A. Ramsey, Halia Valladares Montemayor

Abstract:

This study examined whether the dissemination of information about the circular economy (CE) has any bearing on the likelihood of the implementation of its concepts on an individual basis. Specifically, the goal of this research study was to investigate the impact of consumer knowledge about the circular economy on their behavior in applying such concepts. Given that our current linear supply chains are unsustainable, it is of great importance that we understand what mechanisms are most effective in encouraging consumers to embrace CE. The theoretical framework employed was the theory of planned behavior (TPB). TPB, with its analysis of how attitude, subjective norms, and perceived behavioral control affect intention, provided an adequate model for testing the effects of increased information about the CE on the implementation of its recommendations. The empirical research consisted of a survey distributed among university students, faculty, and staff at a Canadian University in British Columbia.

Keywords: circular economy, consumer behavior, sustainability, theory of planned behavior

Procedia PDF Downloads 124
8254 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience

Authors: Ayomide Oyedele

Abstract:

In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.

Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses

Procedia PDF Downloads 84
8253 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 57
8252 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education

Authors: Olga Guseynova

Abstract:

Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.

Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory

Procedia PDF Downloads 305
8251 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61