Search results for: multi features
4645 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir
Authors: Worawanna Panyakotkaew, Falan Srisuriyachai
Abstract:
Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery
Procedia PDF Downloads 4594644 SEC-MALLS Study of Hyaluronic Acid and BSA Thermal Degradation in Powder and in Solution
Authors: Vasile Simulescu, Jakub Mondek, Miloslav Pekař
Abstract:
Hyaluronic acid (HA) is an anionic glycosaminoglycan distributed throughout connective, epithelial and neural tissues. The importance of hyaluronic acid increased in the last decades. It has many applications in medicine and cosmetics. Hyaluronic acid has been used in attempts to treat osteoarthritis of the knee via injecting it into the joint. Bovine serum albumin (also known as BSA) is a protein derived from cows, which has many biochemical applications. The aim of our research work was to compare the thermal degradation of hyaluronic acid and BSA in powder and in solution, by determining changes in molar mass and conformation, by using SEC-MALLS (size exclusion chromatography -multi angle laser light scattering). The aim of our research work was to observe the degradation in powder and in solution of different molar mass hyaluronic acid samples, at different temperatures for certain periods. The degradation of the analyzed samples was mainly observed by modifications in molar mass.Keywords: thermal degradation, hyaluronic acid, BSA, SEC-MALLS
Procedia PDF Downloads 5054643 Molecular Epidemiologic Distribution of HDV Genotypes among Different Ethnic Groups in Iran: A Systematic Review
Authors: Khabat Barkhordari
Abstract:
Hepatitis delta virus (HDV) is a RNA virus that needs the function of hepatitis B virus (HBV) for its propagation and assembly. Infection by HDV can occur spontaneously with HBV infection and cause acute hepatitis or develop as secondary infection in HBV suffering patients. Based on genome sequence analysis, HDV has several genotypes which show broad geographic and diverse clinical features. The aim of current study is determine the molecular epidemiology of hepatitis delta virus genotype in patients with positive HBsAg among different ethnic groups of Iran. This systematic review study reviews the results of different studies which examined 2000 Iranian patients with HBV infection from 2010 to 2015. Among 2000 patients in this study, 16.75 % were containing anti-HDV antibody and HDV RNA was found in just 1.75% cases. All of positive cases also have genotype I.Keywords: HDV, genotype, epidemiology, distribution
Procedia PDF Downloads 2754642 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1104641 Heritage Management of Wooden Monasteries in Mandalay
Abstract:
Mandalay is home to the last dynasty of Myanmar and is rich in cultural heritage. In Mandalay, cultural heritage is still being seen today, in not only intangible but also many tangible heritages. Intangible heritage, a religious structure such as mosques, churches, stupas, temples, Buddha libraries and monasteries, comprise over 80%. Among these religious structures, the authors aim to study the wooden monasteries built in the 19th century and then propose heritage management for them. Although some of the wooden monasteries are being conserved by the government, NGOs or inhabitants in those buildings, because of the unsystematic management plan and some of the inappropriate traditional methods, even their authentic architectural values have been lost today. In this paper, four aspects are explored: 1) the architectural features of 19th-century wooden monasteries 2) the condition of the problems and challenges, 3) the analysis of the problems of them and finally, based on these above analyses, recommend the appropriate heritage management proposal.Keywords: Mandalay, wooden monasteries, challenges, problems, heritage management proposal
Procedia PDF Downloads 1234640 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks
Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani
Abstract:
Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA
Procedia PDF Downloads 4804639 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1424638 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module
Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song
Abstract:
In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera
Procedia PDF Downloads 4144637 Inorganic Anion Removal from Water Using Natural Adsorbents
Authors: A. Ortuzar, I. Escondrillas, F. Mijangos
Abstract:
There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO3 and FeCl3, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO3: FeCl3 mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L-1 As solution. Besides, the 1:1 FeCO3 and FeCl3 mixture roasted at 500 ºC showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g-1.Keywords: drinking water, natural adsorbent materials, removal, selectivity
Procedia PDF Downloads 1874636 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology
Authors: Vasu Velagapudi, G. Suresh
Abstract:
PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate
Procedia PDF Downloads 3954635 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks
Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof
Abstract:
An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature
Procedia PDF Downloads 1754634 Geographical Information System-Based Approach for Vertical Takeoff and Landing Takeoff and Landing Site Selection
Authors: Chamnan Kumsap, Somsarit Sinnung, Suriyawate Boonthalarath, Teeranai Srithamarong
Abstract:
This research paper addresses the GIS analysis approach to the investigation of suitable sites for a vertical takeoff and landing drone. The study manipulated GIS and terrain layers into a proper input before the spatial analysis that included slope, reclassify, classify, and buffer was applied to the individual layers. The output layers were weighted, and multi-criteria analyzed before those patches failing to comply with filtering out criteria were discarded. Field survey for each suitable candidate site was conducted to cross-check the proposed approach with the real world. Conclusion was extracted for the VTOL takeoff and landing sites, and discussion was provided with further study being suggested on the mission simulation of selected takeoff and landing sites.Keywords: GIS approach, site selection, VTOL, takeoff and landing
Procedia PDF Downloads 1044633 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies
Authors: Paolo Russu
Abstract:
The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification
Procedia PDF Downloads 1724632 Cardiovascular Modeling Software Tools in Medicine
Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz
Abstract:
The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools. For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.Keywords: cardiovascular system, MODELICA simulation software, physical modelling, teaching tool
Procedia PDF Downloads 3004631 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 1984630 Technology Angels and Entrepreneurs: Insights from a Study in Poland
Authors: Rafal Morawczynski
Abstract:
The paper presents results of a study of technology angels in Poland, who are important for the development of the high technology industries. For entrepreneurs, they offer not only capital but also expertise, engagement, and networking. A technology angel is a relatively new type of investor who invests in high-tech start-ups and supports their founders (entrepreneurs) in the development process of a new venture. Conclusions are drawn from a comparison between 8 technology angels and 7 'classical' business angels. Results present features and behaviors of technology angels that distinguish them from traditional (typical, classic) business angels. As this type of investor actively cooperates with entrepreneurs, the study focuses mainly on their perception of venture founders and several aspects of this cooperation: perception of entrepreneurs’ characteristics by angels, correction of expectations toward corporate governance, and 'value adding' activities.Keywords: business angels, entrepreneurs, Poland, start-up, technology entrepreneurship, venture capital
Procedia PDF Downloads 1894629 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2624628 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1114627 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria
Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan
Abstract:
Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM
Procedia PDF Downloads 1384626 Irradion: Portable Small Animal Imaging and Irradiation Unit
Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek
Abstract:
In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging
Procedia PDF Downloads 904625 Can Antipsychotics Use for Schizophrenia on Long Term Lower Serum Cortisol Level?
Authors: Rady A., Elsheshai A., Eltawel M.
Abstract:
Introduction and Aim of work: Literature suggest that antipsychotic medications may decrease cortisol level, an effect that seems to be more present with second generation antipsychotic. Our study aims at assessing effect of long term use of antipsychotics on cortisol level Subjects and Methods: 30 chronic schizophrenic patients on antipsychotics compared to 20 drug naive schizophrenic patients as regards serum cortisol level Results: Cortisol level was significantly lower in chronic schizophrenic patients receiving antipsychotics compared to drug naive patients (P=0.002 <0.05) Conclusion: Antipsychotic medications seem to have the potential to decrease cortisol level in blood. Among hypothesis proposed in literature is the good control of pseudo stress due to psychotic features.Keywords: schizophrenia, antipsychotic, cortisol, HPA
Procedia PDF Downloads 5204624 Linac Quality Controls Using An Electronic Portal Imaging Device
Authors: Domingo Planes Meseguer, Raffaele Danilo Esposito, Maria Del Pilar Dorado Rodriguez
Abstract:
Monthly quality control checks for a Radiation Therapy Linac may be performed is a simple and efficient way once they have been standardized and protocolized. On the other hand this checks, in spite of being imperatives, require a not negligible execution times in terms of machine time and operators time. Besides it must be taken into account the amount of disposable material which may be needed together with the use of commercial software for their performing. With the aim of optimizing and standardizing mechanical-geometric checks and multi leaves collimator checks, we decided to implement a protocol which makes use of the Electronic Portal Imaging Device (EPID) available on our Linacs. The user is step by step guided by the software during the whole procedure. Acquired images are automatically analyzed by our programs all of them written using only free software.Keywords: quality control checks, linac, radiation oncology, medical physics, free software
Procedia PDF Downloads 1994623 Mixed Frequency Excitation of an Electrostatically Actuated Resonator
Authors: Abdallah H. Ramini, Alwathiqbellah I. Ibrahim, Mohammad I. Younis
Abstract:
We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler Vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation.Keywords: electrostatically actuated resonator, multi-frequency excitation, nonlinear dynamics, AC harmonic signals
Procedia PDF Downloads 6224622 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies
Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott
Abstract:
We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury
Procedia PDF Downloads 1464621 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food
Authors: Surbhi Rani, Sunita Gakkhar
Abstract:
The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations
Procedia PDF Downloads 1094620 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 1574619 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry
Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina
Abstract:
Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5
Procedia PDF Downloads 2614618 Impact of Herbicides on Soil Biology in Rapeseed
Authors: M. Eickermann, M. K. Class, J. Junk
Abstract:
Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.Keywords: cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape
Procedia PDF Downloads 2474617 Genetic Algorithm Optimization of Multiple Resources for Multi-Projects
Authors: A. Samer Ezeldin, Sarah A. Fotouh
Abstract:
Optimization of resources is very important in all fields, as in construction management. Project managers have to face problems regarding management of cost, time and available resources of single projects and more problems arise when managing multiple projects. Most of the studies focused on optimization of resources for a single project, but, this paper will discuss the design and modeling of multiple resources optimization for multiple projects using Genetic Algorithm. Most of the companies in construction industry optimize the resources for single projects only, but with the presence of several mega projects in several developing countries running at the same time, there is a need for a model to enhance the efficiency of available resources and decreases the fluctuation as much as possible. The proposed model calculates the cost of each resource, tries to minimize the cost of extra resources as much as possible and generates the schedule of each project within a selected program.Keywords: construction management, genetic algorithm, multiple projects, multiple resources, optimization
Procedia PDF Downloads 4594616 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 149