Search results for: metal load
2043 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric
Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui
Abstract:
This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.Keywords: anisotropy, off-axis tensile test, strain fields, textile woven fabric
Procedia PDF Downloads 3612042 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor
Authors: M. Brahim, I. Bahri, Y. Bernard
Abstract:
Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.Keywords: piezoelectric motors, position control, H∞, RST, stability criteria, robustness
Procedia PDF Downloads 2452041 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column
Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana
Abstract:
The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.Keywords: clay materials, fix bed adsorption column, metal ions, printing developer
Procedia PDF Downloads 3262040 Settlement Performance of Soft Clay Reinforced with Granular Columns
Authors: Muneerah Jeludin, V. Sivakumar
Abstract:
Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.Keywords: ground improvement, model test, reinforced soil, settlement
Procedia PDF Downloads 4662039 Developing Ergonomic Prototype Testing Method for Manual Material Handling
Authors: Yusuf Nugroho Doyo Yekti, Budi Praptono, Fransiskus Tatas Dwi Atmaji
Abstract:
There is no ergonomic prototype testing method for manual material handling yet. This study has been carried out to demonstrate the comprehensive ergonomic assessment. The ergonomic assessment is important to improve safety of products and to ensure usefulness of the product. The prototype testing is conducted by involving few intended users and ordinary people. In this study, there are four operators who participated in several tests. Also, there are 30 ordinary people who joined the usability test. All the ordinary people never do material handling activity nor use material handling device. The methods used in the tests are Rapid Entire Body Assessment (REBA), Recommended Weight Limit (RWL), and Cardiovascular Load (%CVL) other than usability test and questionnaire. The proposed testing methods cover comprehensive ergonomic aspects, i.e. physical aspect, mental aspect, emotional aspects of human.Keywords: ergonomic, manual material handling, prototype testing, assessment
Procedia PDF Downloads 5182038 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction
Authors: B. Guezzen, M.A. Didi, B. Medjahed
Abstract:
A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate
Procedia PDF Downloads 3762037 Feasibility Study of PV, Wind and PV-Wind Hybrid System for Al Al-Bayt University, Jordan
Authors: Mohammad Al-Smairan
Abstract:
Jordan has no fossil fuel resources like coal, oil, or natural gas but has plenty of renewable energy resources like solar and wind energy. The potential of solar energy is very good where Jordan is located in the sunbelt area that possesses the highest solar radiation in the world, especially in the Northern hemisphere, while the potential of wind energy is good in the southern part of the country where wind projects are installed. Al al-Bayt University is located in the northern part of the country, where solar energy potential is high and wind energy potential is low. This research was carried out to investigate the best option for renewable energy systems to meet the load demand of the University. By using the SAM simulation model and HOMER Pro simulation model and depending on the results obtained, the stand-alone photovoltaic (PV) system is the best option, which completely matches the renewable energy resources available in the area.Keywords: PV, wind, hybrid, Al al-Bayt University, Jordan
Procedia PDF Downloads 122036 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis
Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino
Abstract:
The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty
Procedia PDF Downloads 5032035 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere
Authors: Md. Hasan Zahir
Abstract:
Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica
Procedia PDF Downloads 2592034 Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial
Authors: Fernanda A. Vechietti, Natália O. B. Muniz, Laura C. Treccani, Kurosch. Rezwan, Luis Alberto dos Santos
Abstract:
CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness.Keywords: biomaterial, CoCr, surface treatment, heat treatment, roughness
Procedia PDF Downloads 5462033 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks
Authors: Dibu Dave Mbako, Bin Cheng
Abstract:
This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution
Procedia PDF Downloads 2252032 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys
Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho
Abstract:
Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery
Procedia PDF Downloads 5342031 Quantitative Analysis of Multiprocessor Architectures for Radar Signal Processing
Authors: Deepak Kumar, Debasish Deb, Reena Mamgain
Abstract:
Radar signal processing requires high number crunching capability. Most often this is achieved using multiprocessor platform. Though multiprocessor platform provides the capability of meeting the real time computational challenges, the architecture of the same along with mapping of the algorithm on the architecture plays a vital role in efficiently using the platform. Towards this, along with standard performance metrics, few additional metrics are defined which helps in evaluating the multiprocessor platform along with the algorithm mapping. A generic multiprocessor architecture can not suit all the processing requirements. Depending on the system requirement and type of algorithms used, the most suitable architecture for the given problem is decided. In the paper, we study different architectures and quantify the different performance metrics which enables comparison of different architectures for their merit. We also carried out case study of different architectures and their efficiency depending on parallelism exploited on algorithm or data or both.Keywords: radar signal processing, multiprocessor architecture, efficiency, load imbalance, buffer requirement, pipeline, parallel, hybrid, cluster of processors (COPs)
Procedia PDF Downloads 4142030 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry
Procedia PDF Downloads 1432029 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: hybrid energy system, optimum sizing, power management, TLBO
Procedia PDF Downloads 5802028 Towards Resilient Cloud Computing through Cyber Risk Assessment
Authors: Hilalah Alturkistani, Alaa AlFaadhel, Nora AlJahani, Fatiha Djebbar
Abstract:
Cloud computing is one of the most widely used technology which provides opportunities and services to government entities, large companies, and standard users. However, cybersecurity risk management studies of cloud computing and resiliency approaches are lacking. This paper proposes resilient cloud cybersecurity risk assessment and management tailored specifically, to Dropbox with two approaches:1) technical-based solution motivated by a cybersecurity risk assessment of cloud services, and 2)a target personnel-based solution guided by cybersecurity-related survey among employees to identify their knowledge that qualifies them withstand to any cyberattack. The proposed work attempts to identify cloud vulnerabilities, assess threats and detect high risk components, to finally propose appropriate safeguards such as failure predicting and removing, redundancy or load balancing techniques for quick recovery and return to pre-attack state if failure happens.Keywords: cybersecurity risk management plan, resilient cloud computing, cyberattacks, cybersecurity risk assessment
Procedia PDF Downloads 1432027 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.Keywords: aluminum frame soundproofing wall, Monte Carlo simulation, numerical simulation, wind fragility
Procedia PDF Downloads 2602026 Corrosion Inhibition of Mild Steel by Calcium Gluconate in Magnesium Chloride Solution
Authors: Olaitan Akanji, Cleophas Loto, Patricia Popoola, Andrei Kolesnikov
Abstract:
Studies involving performance of corrosion inhibitors had been identified as one of the critical research needs for improving the durability of mild steel used in various industrial applications. This paper investigates the inhibiting effect of calcium gluconate against the corrosion of mild steel in 2.5M magnesium chloride using weight loss method and linear polarization technique, calculated corrosion rates from the obtained weight loss data, potentiodynamic polarization measurements are in good agreement. Results revealed calcium gluconate has strong inhibitory effects with inhibitor efficiency increasing with increase in inhibitor concentration at ambient temperature, the efficiency of the inhibitor increased in the following order of concentrations 2%g/vol,1.5%g/vol,1%g/vol,0.5%g/vol. Further results obtained from potentiodynamics experiments had good correlation with those of the gravimetric methods, the adsorption of the inhibitor on the mild steel surface from the chloride has been found to obey Langmuir, Frumkin and Freudlich adsorption isotherm. Scanning electron microscopy (SEM) observation confirmed the existence of an absorbed protective film on the metal surface.Keywords: calcium gluconate, corrosion, magnesium chloride, mild steel
Procedia PDF Downloads 3502025 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet
Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer
Abstract:
In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding
Procedia PDF Downloads 3922024 Recovery of Wastewater Treated of Boumerdes Step for Irrigation
Authors: N. Ouslimani, M. T. Abadlia, S. Yakoub, F. Tebbani
Abstract:
Water has always been synonymous with life and growth. Blue gold is first essential to the survival of the human being whose body consists of more than 65% with the development of industrialization and consumption patterns; volumes of wastewater discharges have increased considerably whether industrial or domestic, waste water must be purified before discharge. Treatment, therefore, aims to reduce the pollution load which contain. The resources in Algeria are limited and unevenly distributed. Thus, to meet all the water needs of the country and to preserve the waters of good quality drinking water supply, one solution would be to use them according to their quality and to irrigate crops for the food or be directed to the irrigation of green areas or sports complex. The purification performance of this STEP has been established since the pH analyzed pollution criteria (7.36) and temperature (16°C), MES (10 mg / l), electrical conductivity (1122 / µs / cm), DBO5 (6mg / l), DCO (15mg / l) meet the discharge standards. Arguably the purified water discharged out of the boumerdes STEP comply with Algerian regulations and can be reused in agriculture. COD biodegradability of the coefficient / BOD5 is 2.5 (less than 3) indicates that of the effluent are biodegradable hence their urban origin.Keywords: irrigation, recovery, treated, wastewater
Procedia PDF Downloads 2552023 Heat Pipe Production and Life Performance Tests in Geosynchronous Telecom Satellites
Authors: Erkam Arslantas
Abstract:
Heat pipes one of the thermal control elements are used in communication satellites. A selection of the heat pipes of satellite thermal design will be emphasized how important and effective it is. In this article, manufacturing and performance control tests of heat pipes are reviewed from the current literature. The heat pipe is expected to function efficiently during all missions of the spacecraft from Beginning of Life (BOL) to End of Life (EOL). There are many parameters that are evaluated in manufacturing and performance control tests of the heat pipes which are used in satellites. These parameters are pressure design, leakage, noncondensable gas level (N.C.G), sine vibration, shock and static load capabilities, aging, bending, proof, final test etc. These parameters will be explained separately for the heat pipes in this review article and young researches working on the thermal control system of Geosynchronous Satellites systems can find easily related information in this article.Keywords: communication satellite, heat pipe, performance test, thermal control
Procedia PDF Downloads 1712022 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India
Authors: Roshni Raha, Kavya P., Gayathri M.
Abstract:
India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle
Procedia PDF Downloads 772021 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate
Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim
Abstract:
The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.Keywords: micro grid, energy storage systems, ramp rate, control strategy
Procedia PDF Downloads 3932020 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate
Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering
Procedia PDF Downloads 2452019 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging
Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho
Abstract:
Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.Keywords: modal testing, natural frequency, vibration aging, welded structure
Procedia PDF Downloads 4852018 ZnMn₂O₄ / Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications
Authors: Nivedha L. K., Dhinesh Kumar Murugaiah, Ganapathi Rao Kandregula, Raja Murugan, Kothandaraman R.
Abstract:
ZnMn₂O₄, a non-precious metal catalyst for oxygen reduction reaction (ORR), was recycled from the spent primary Zn-C battery and utilized in the zinc-air battery. Catalysts exhibiting facile ORR kinetics are a requirement for building efficient Zinc-air batteries. ZnMn₂O₄ demonstrated excellent catalytic activity towards ORR in an aqueous alkaline medium, with an onset potential of 0. 90 V vs. RHE. The recycled ZnMn₂O₄ manifested a similar performance (at ~ 1.0 V) as the chemically synthesized one with a specific capacity of 210 mAh gzn-¹ at a constant current discharge of 15 mA cm-². A single electrode potential study was done to comprehend the losses at the electrodes and to identify the limiting electrode. Interestingly, the cathode was improving during discharge, which is in contrast to the expectation due to the accumulation of peroxide around the catalytic layer. Although the anode has exhibited minimal polarization, beyond a capacity of 210 mAh g-¹, the supersaturation of electrolyte occurs with zincate ion causing precipitation of ZnO on the cell components, thereby leading to sudden polarization of the cell and hence zinc electrode act as a limiting electrode in this system.Keywords: battery recycling, oxygen reduction reaction, single electrode measurement, Zn-air battery, ZnMn₂O₄ recovery
Procedia PDF Downloads 752017 Effect of Zirconium Addition to Aluminum Grain Refined by Ti on its Resistance to Wear: A Three-Dimensional Approach
Authors: S. M. A. Al-Qawabah, A. I. O. Zaid
Abstract:
Aluminum and its alloys are versatile materials which are widely used in industrial and engineering applications due to their good and useful properties e.g. high strength to weight ratio, high thermal and electrical conductivities and good resistance to corrosion. However, against these favorable properties they have the disadvantage they solidifying large grain columnar structure which negatively affects their mechanical properties and surface quality. Aluminum alloys are normally grain refined by some alloying elements, such as Ti, Ti-B or Zr. In this paper, the effect of zirconium addition to Al grain refined by Ti after extrusion on its wear resistance is investigated under different loads and sliding speeds namely at 5,10 and 20 N loads and sliding speeds ranging from m/min. and m/min. the results are presented in three-dimensional wear mode. To the best the authors' knowledge, the wear of aluminum in 3-dimensions has never been tackled before. In this work, the wear resistance of by presenting the results of wear are presented and discussed on the time, load and speed plots.Keywords: aluminum grain refined, addition of titanium, wear resistance, titanium
Procedia PDF Downloads 4022016 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants
Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti
Abstract:
The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.Keywords: carbon steel, oilfield, corrosion, anionic surfactants
Procedia PDF Downloads 952015 The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle
Authors: Miroslaw Wendeker, Piotr Kacejko, Marcin Szlachetka, Mariusz Duk
Abstract:
This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics.Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, kinetic energy
Procedia PDF Downloads 3172014 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens
Authors: Amandeep Kaur, Sangeeta Sharma
Abstract:
Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead
Procedia PDF Downloads 89