Search results for: high-dimensional data analysis
39089 Sensory Gap Analysis on Port Wine Promotion and Perceptions
Authors: José Manue Carvalho Vieira, Mariana Magalhães, Elizabeth Serra
Abstract:
The Port Wine industry is essential to Portugal because it carries a tangible cultural heritage and for social and economic reasons. Positioned as a luxury product, brands need to pay more attention to the new generation's habits, preferences, languages, and sensory perceptions. Healthy lifestyles, anti-alcohol campaigns, and digitalisation of their buying decision process need to be better understood to understand the wine market in the future. The purpose of this study is to clarify the sensory perception gap between Port Wine descriptors promotion and the new generation's perceptions to help wineries to align their strategies. Based on the interpretivist approach - multiple methods and techniques (mixed-methods), different world views and different assumptions, and different data collection methods and analysis, this research integrated qualitative semi-structured interviews, Port Wine promotion contents, and social media perceptions mined by Sentiment Analysis Enginius algorithm. Findings confirm that Port Wine CEOs' strategies, brands' promotional content, and social perceptions are not sufficiently aligned. The central insight for Port Wine brands' managers is that there is a long and continuous work of understanding and associating their descriptors with the most relevant perceptual values and criteria of their targets to reposition (when necessary) and sustainably revitalise their brands. Finally, this study hypothesised a sensory gap that leads to a decrease in consumption, trying to find recommendations on how to transform it into an advantage for a better attraction towards the young age group (18-25).Keywords: port wine, consumer habits, sensory gap analysis, wine marketing
Procedia PDF Downloads 24639088 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 2039087 Appropriation of Cryptocurrencies as a Payment Method by South African Retailers
Authors: Neliswa Dyosi
Abstract:
Purpose - Using an integrated Technology-Organization-Environment (TOE) framework and the model of technology appropriation (MTA) as a theoretical lens, this interpretive qualitative study seeks to understand and explain the factors that influence the appropriation, non-appropriation, and disappropriation of bitcoin as a payment method by South African retailers. Design/methodology/approach –The study adopts the interpretivist philosophical paradigm. Multiple case studies will be adopted as a research strategy. For data collection, the study follows a qualitative approach. Qualitative data will be collected from the six retailers in various industries. Semi-structured interviews and documents will be used as the data collection techniques. Purposive and snowballing sampling techniques will be used to identify participants within the organizations. Data will be analyzed using thematic analysis. Originality/value - Using the deduction approach, the study seeks to provide a descriptive and explanatory contribution to theory. The study contributes to theory development by integrating the MTA and TOE frameworks as a means to understand technology adoption behaviors of organizations, in this case, retailers. This is also the first study that looks at an integrated approach of the Technology-Organization-Environment (TOE) framework and the MTA framework to understand the adoption and use of a payment method. South Africa is ranked amongst the top ten countries in the world on cryptocurrency adoption. There is, however, still a dearth of literature on the current state of adoption and usage of bitcoin as a payment method in South Africa. The study will contribute to the existing literature as bitcoin cryptocurrency is gaining popularity as an alternative payment method across the globe.Keywords: cryptocurrency, bitcoin, payment methods, blockchain, appropriation, online retailers, TOE framework, disappropriation, non-appropriation
Procedia PDF Downloads 13639086 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 27939085 The Use of AI to Measure Gross National Happiness
Authors: Riona Dighe
Abstract:
This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness
Procedia PDF Downloads 11939084 Your Second Step on Research Method: Applied Linguistic Perspective
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Aims: To summarize and critically review involved articles for the purpose of investigating the research ethics in them. It also tests the hypothesis, identifying causal relationship, association between variables and differences between/ among groups of participants Design: This is quasi experimental study wherein scientific models were included. It starts from the ideas before the researchers draw the questions, formulate the hypothesis and seek for the solutions. Hypothesis was brief and to the point. A data collection form was constructed. The researchers made use of speculative, presumptive, stipulated and conclusive propositions. Data are statistically analyzed and visualized and are treated objectively in light of the characteristics of a good research. Outcomes: Results and discussion are relevant to the statement of the problem and research objectives. Principles of ethical research were met where the researchers ensured high ethical standards. Variables’ types are scientifically analyzed.Keywords: research, method, analysis, speech, text
Procedia PDF Downloads 4339083 A Consensus Approach to the Formulation of a School ICT Policy: A Q-Methodology Case Study
Authors: Thiru Vandeyar
Abstract:
This study sets out to explore how teachers’ beliefs and attitudes about ICT policy influence a consensus approach to the formulation of a school ICT policy. This case study proposes Q- methodology as an innovative method to facilitate a school’s capacity to develop policy reflecting teacher beliefs and attitudes. Q-methodology is used as a constructivist approach to the formulation of an ICT policy. Data capture was a mix of Q-methodology and qualitative principles. Data was analyzed by means of document, content and cluster analysis methods. Findings were threefold: First, teachers’ beliefs and attitudes about ICT policy influenced a consensus approach by including teachers as policy decision-makers. Second, given the opportunity, teachers have the inherent ability to deconstruct and critically engage with policy statements according to their own professional beliefs and attitudes. And third, an inclusive approach to policy formulation may inform the practice of school leaders and policymakers alike on how schools may develop their own policy.Keywords: ICT, policy, teacher beliefs, consensus
Procedia PDF Downloads 50939082 Recommendations for Teaching Word Formation for Students of Linguistics Using Computer Terminology as an Example
Authors: Svetlana Kostrubina, Anastasia Prokopeva
Abstract:
This research presents a comprehensive study of the word formation processes in computer terminology within English and Russian languages and provides listeners with a system of exercises for training these skills. The originality is that this study focuses on a comparative approach, which shows both general patterns and specific features of English and Russian computer terms word formation. The key point is the system of exercises development for training computer terminology based on Bloom’s taxonomy. Data contain 486 units (228 English terms from the Glossary of Computer Terms and 258 Russian terms from the Terminological Dictionary-Reference Book). The objective is to identify the main affixation models in the English and Russian computer terms formation and to develop exercises. To achieve this goal, the authors employed Bloom’s Taxonomy as a methodological framework to create a systematic exercise program aimed at enhancing students’ cognitive skills in analyzing, applying, and evaluating computer terms. The exercises are appropriate for various levels of learning, from basic recall of definitions to higher-order thinking skills, such as synthesizing new terms and critically assessing their usage in different contexts. Methodology also includes: a method of scientific and theoretical analysis for systematization of linguistic concepts and clarification of the conceptual and terminological apparatus; a method of nominative and derivative analysis for identifying word-formation types; a method of word-formation analysis for organizing linguistic units; a classification method for determining structural types of abbreviations applicable to the field of computer communication; a quantitative analysis technique for determining the productivity of methods for forming abbreviations of computer vocabulary based on the English and Russian computer terms, as well as a technique of tabular data processing for a visual presentation of the results obtained. a technique of interlingua comparison for identifying common and different features of abbreviations of computer terms in the Russian and English languages. The research shows that affixation retains its productivity in the English and Russian computer terms formation. Bloom’s taxonomy allows us to plan a training program and predict the effectiveness of the compiled program based on the assessment of the teaching methods used.Keywords: word formation, affixation, computer terms, Bloom's taxonomy
Procedia PDF Downloads 1439081 Investigating Problems and Social Support for Mothers of Poor Households
Authors: Niken Hartati
Abstract:
This study provides a description of the problem and sources of social support that given to 90 mothers from poor households. Data were collected using structured interviews with the three main questions: 1) what kind of problem in mothers daily life, 2) to whom mothers ask for help to overcome it and 3) the form of the assistances that provided. Furthermore, the data were analyzed using content analysis techniques were then coded and categorized. The results of the study illustrate the problems experienced by mothers of poor households in the form of: subsistence (37%), child care (27%), management of money and time (20%), housework (5%), bad place of living (5%), the main breadwinner (3%), and extra costs (3%). While the sources of social support that obtained by mothers were; neighbors (10%), extended family (8%), children (8%), husband (7%), parents (7%), and siblings (5%). Unfortunately, more mothers who admitted not getting any social support when having problems (55%). The form of social support that given to mother from poor household were: instrumental support (91%), emotional support (5%) and informational support (2%). Implications for further intervention also discussed in this study.Keywords: household problems, social support, mothers, poor households
Procedia PDF Downloads 36539080 Corporate Performance and Balance Sheet Indicators: Evidence from Indian Manufacturing Companies
Authors: Hussain Bohra, Pradyuman Sharma
Abstract:
This study highlights the significance of Balance Sheet Indicators on the corporate performance in the case of Indian manufacturing companies. Balance sheet indicators show the actual financial health of the company and it helps to the external investors to choose the right company for their investment and it also help to external financing agency to give easy finance to the manufacturing companies. The period of study is 2000 to 2014 for 813 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test and Hausman test results proof the suitability of the fixed effect model for the estimation. Return on assets (ROA) is used as the proxy to measure corporate performance. ROA is the best proxy to measure corporate performance as it already used by the most of the authors who worked on the corporate performance. ROA shows return on long term investment projects of firms. Different ratios like Current Ratio, Debt-equity ratio, Receivable turnover ratio, solvency ratio have been used as the proxies for the Balance Sheet Indicators. Other firm specific variable like firm size, and sales as the control variables in the model. From the empirical analysis, it was found that all selected financial ratios have significant and positive impact on the corporate performance. Firm sales and firm size also found significant and positive impact on the corporate performance. To check the robustness of results, the sample was divided on the basis of different ratio like firm having high debt equity ratio and low debt equity ratio, firms having high current ratio and low current ratio, firms having high receivable turnover and low receivable ratio and solvency ratio in the form of firms having high solving ratio and low solvency ratio. We find that the results are robust to all types of companies having different form of selected balance sheet indicators ratio. The results for other variables are also in the same line as for the whole sample. These findings confirm that Balance sheet indicators play as significant role on the corporate performance in India. The findings of this study have the implications for the corporate managers to focus different ratio to maintain the minimum expected level of performance. Apart from that, they should also maintain adequate sales and total assets to improve corporate performance.Keywords: balance sheet, corporate performance, current ratio, panel data method
Procedia PDF Downloads 26439079 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 40039078 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 47639077 Efficiency Measurement of Indian Sugar Manufacturing Firms - a DEA Approach
Authors: Amit Kumar Dwivedi, Priyanko Ghosh
Abstract:
Data Envelopment analysis (DEA) has been used to calculate the technical and scale efficiency measures of the public and private sugar manufacturing firms of the Indian Sugar Industry (2006 to 2010). Within DEA framework, the input & Output oriented Variable Returns to Scale (VRS) & Constant Return to Scale (CRS) model is employed for the study of Decision making units (DMUs). A representative sample of 43 firms which account for major portion of the total market share is studied. The selection criterion for the inclusion of a firm in the analysis was the total sales of INR 5,000 million or more in the year 2010. After reviewing the literature it is found that no study has been conducted in the context of Indian sugar manufacturing firms in the Post-liberalization era which motivates us to initiate the study.Keywords: technical efficiency, Indian sugar manufacturing units, DEA, input output oriented
Procedia PDF Downloads 54239076 Border Trade Policy to Promote Thailand - Myanmar Mae Sai, Chiang Rai Province
Authors: Sakapas Saengchai, Pichamon Chansuchai
Abstract:
Research Thai- Myanmar Border Trade Promotion Policy, Mae Sai District, Chiang Rai Province The objectives of this study were to study the policy of promoting Thai- Myanmar border trade in Mae Sai district, Chiang Rai province. And suitable models for the development of border trade in Mae Sai. Chiang Rai province This research uses qualitative methodology. The method of collecting data from research papers. Participatory Observation In-depth interviews in which the information is important, the governor of Chiang Rai. Chiang Rai Customs Service Executive Office of Mae Sai Immigration Bureau Maesai Chamber of Commerce and Private Entrepreneurs By specific sampling Data analysis uses content analysis. The study indicated that Border Trade Promotion Policy The direction taken by the government to focus on developing 1. Security is further reducing crime. Smuggling and human trafficking Including the preparation to protect people from terrorism and natural disasters. And cooperation with Burma on border security. 2. The development of wealth is the promotion of investment. The transport links, logistics value chain. Products and services across the Thai-Myanmar border. Improve the regulations and laws to promote fair trade. Convenient and fast 3. Sustainable development is the ability to generate income, quality of life of people in the Thai border to increase continuously. By using balanced natural resources, production and consumption are environmentally friendly. Which featured the participation of all sectors of the public and private sectors in the region to drive the development of the border with Thailand. Chiang Rai province To be more competitive .Keywords: Border, Trade, Policy, Promote
Procedia PDF Downloads 17139075 Pragmatic Development of Chinese Sentence Final Particles via Computer-Mediated Communication
Authors: Qiong Li
Abstract:
This study investigated in which condition computer-mediated communication (CMC) could promote pragmatic development. The focal feature included four Chinese sentence final particles (SFPs), a, ya, ba, and ne. They occur frequently in Chinese, and function as mitigators to soften the tone of speech. However, L2 acquisition of SFPs is difficult, suggesting the necessity of additional exposure to or explicit instruction on Chinese SFPs. This study follows this line and aims to explore two research questions: (1) Is CMC combined with data-driven instruction more effective than CMC alone in promoting L2 Chinese learners’ SFP use? (2) How does L2 Chinese learners’ SFP use change over time, as compared to the production of native Chinese speakers? The study involved 19 intermediate-level learners of Chinese enrolled at a private American university. They were randomly assigned to two groups: (1) the control group (N = 10), which was exposed to SFPs through CMC alone, (2) the treatment group (N = 9), which was exposed to SFPs via CMC and data-driven instruction. Learners interacted with native speakers on given topics through text-based CMC over Skype. Both groups went through six 30-minute CMC sessions on a weekly basis, with a one-week interval after the first two CMC sessions and a two-week interval after the second two CMC sessions (nine weeks in total). The treatment group additionally received a data-driven instruction after the first two sessions. Data analysis focused on three indices: token frequency, type frequency, and acceptability of SFP use. Token frequency was operationalized as the raw occurrence of SFPs per clause. Type frequency was the range of SFPs. Acceptability was rated by two native speakers using a rating rubric. The results showed that the treatment group made noticeable progress over time on the three indices. The production of SFPs approximated the native-like level. In contrast, the control group only slightly improved on token frequency. Only certain SFPs (a and ya) reached the native-like use. Potential explanations for the group differences were discussed in two aspects: the property of Chinese SFPs and the role of CMC and data-driven instruction. Though CMC provided the learners with opportunities to notice and observe SFP use, as a feature with low saliency, SFPs were not easily noticed in input. Data-driven instruction in the treatment group directed the learners’ attention to these particles, which facilitated the development.Keywords: computer-mediated communication, data-driven instruction, pragmatic development, second language Chinese, sentence final particles
Procedia PDF Downloads 41839074 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics
Procedia PDF Downloads 24339073 Water Quality and Coastal Management Profile Assessment of Puerto Galera Bay, Philippines
Authors: Ma. Manna Farrel B. Pinto
Abstract:
As global industrialization progresses, the environment remains to be at risk of disturbances brought by developments of cities and communities. Impacts of flourishing industries such as tourism require rapid growth of establishments and may threaten ecosystems and natural resources. Puerto Galera as a biosphere reserve and declared as the Center of the World’s Center of Marine Shorefish Biodiversity is on the brink of ecological deterioration as tourism further develops in its coastal areas. Apparently, attempts were initiated to establish a baseline for designation of protection in the economic and coastal marine zones of Puerto Galera but continuity of its implementation and coordination of concerned units remains deficient. Indications of eutrophication have been observed based on water quality analysis although parameter values still comply with the national standards for coastal waters. Water quality data, biodiversity and hydrodynamic information, gathered from studies, and local government units were analysed to assess the condition of the coast as well as acting policies implemented by the local authorities. Sources of contaminants were also located in its three main communities, and their shores wherein in recommendations for installing wastewater treatment facilities and further improvement of policies of waste discharge must be addressed. With a conceptual framework proposed in the study, a comprehensive data analysis and coordinated management are necessary to form an integrated coastal management for further protection and preservation of the sustainable coastal marine ecosystem of Puerto Galera.Keywords: coastal management, environmental management, integrated resource management, Puerto Galera
Procedia PDF Downloads 26739072 Creativity in the Use of Sinhala and English in Advertisements in Sri Lanka: A Morphological Analysis
Authors: Chamindi Dilkushi Senaratne
Abstract:
Sri Lanka has lived with the English language for more than 200 years. Although officially considered a link language, the phenomenal usage of English by the Sinhala-English bilingual has given rise to a mixed code with identifiable structural characteristics. The extensive use of the mixed language by the average Sri Lankan bilingual has resulted in it being used as a medium of communication by creative writers of bilingual advertisements in Sri Lanka. This study analyses the way in which English is used in bilingual advertisements in both print and electronic media in Sri Lanka. The theoretical framework for the study is based on Kachru’s analysis of the use of English by the bilingual, Muysken’s typology on code mixing theories in colonial settings and Myers-Scotton’s theory on the Matrix Language Framework Model. The study will look at a selection of Sinhala-English advertisements published in newspapers from 2015 to 2016. Only advertisements using both Sinhala and English are used for the analysis. To substantiate data collected from the newspapers, the study will select bilingual advertisements from television advertisements. The objective of the study is to analyze the mixed patterns used for creative purposes by advertisers. The results of the study will reveal the creativity used by the Sinhala –English bilingual and the morphological processes used by the creators of Sinhala-English bilingual advertisements to attract the masses.Keywords: bilingual, code mixing, morphological processes, mixed code
Procedia PDF Downloads 28539071 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources
Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu
Abstract:
A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast
Procedia PDF Downloads 16339070 Social Movements of Central-Eastern Europe: Examining Trends of Cooperation and Antagonism by Using Big Data
Authors: Reka Zsuzsanna Mathe
Abstract:
The globalization and the Europeanization have significantly contributed to a change in the role of the nation-states. The global economic crisis, the climate changes, and the recent refugee crisis, are just a few among many challenges that cannot be effectively addressed by the traditional role of the nation-states. One of the main roles of the states is to solve collective action problems, however due to their changing roles; apparently this is getting more and more difficult. Depending on political culture, collective action problems are solved either through cooperation or conflict. The political culture of Central and Eastern European (CEE) countries is marked by low civic participation and by a weak civil society. In this type of culture collective action problems are likely to be induced through conflict, rather than the democratic process of dialogue and any type of social change is probably to be introduced by social movements. Several studies have been conducted on the social movements of the CEE countries, yet, it is still not clear if the most significant social movements of the region tend to choose rather the cooperative or the conflictual way as action strategy. This study differentiates between a national and a European action field, having different social orders. The actors of the two fields are the broadly understood civil society members, conceptualized as social movements. This research tries to answer the following questions: a) What are the norms that best characterize the CEE countries’ social order? b) What type of actors would prefer a change and in which areas? c) Is there a significant difference between the main actors active in the national versus the European field? The main hypotheses are that there are conflicting norms defining the national and the European action field, and there is a significant difference between the action strategies adopted by social movements acting in the two different fields. In mapping the social order, the study uses data provided by the European Social Survey. Big data of the Global Data on Events, Location and Tone (GDELT) database offers information regarding the main social movements and their preferred type of action. The unit of the analysis is the so called ‘Visegrad 4’ countries: Poland, Czech Republic, Slovakia and Hungary and the research uses data starting from 2005 (after the European accession of these four countries) until May, 2017. According to the data, the main hypotheses were confirmed.Keywords: big data, Central and Eastern Europe, civil society, GDELT, social movements
Procedia PDF Downloads 16139069 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 12339068 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 39939067 Impact of Anthropogenic Climate Change on Hail in Eastern Georgia
Authors: MIkheil Pipia, Nazibrola Beglarashvili
Abstract:
Modern anthropogenic changes in climate can affect the microphysical and electrical properties of clouds, such as the conditions that cause intense hail and lightning. At the same time, the effect of the impact largely depends on the physical-geographical conditions and the ecological situation. It should be noted that the growth of anthropogenic pollution in the atmosphere has a significant impact on the dynamics of hail processes. For the statistical analysis of the number of hail days against the background of modern climate change, the average number of hail days at the stations according to decades was used, which allows to weaken short-term fluctuations and reveal long-term changes. In order to determine the dynamics of hail days in Eastern Georgia, the observation data of some meteorological stations from 1951-2000 were analyzed. In total, the data of 41 meteorological stations of Eastern Georgia about hail for the period of 1961-2018 have been processed.Keywords: climate, meteorology phenomena, anthropocenic influence, hail
Procedia PDF Downloads 7639066 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain
Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang
Abstract:
Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature
Procedia PDF Downloads 37439065 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 12139064 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 5839063 The Nexus between Social Media Usage and Overtourism: A Survey Study Applied to Hangzhou in China
Authors: Song Qingfeng
Abstract:
This research aims to seek the relationship between social media usage and overtourism from the perspective of tourists based on the theory of Maslow’s hierarchy needs. A questionnaire is formulated to collect data from 400 tourists who have visited the Hangzhou city in China in the last 12 months. Structural Equation Model (SEM) is employed to analysis data. The finding is that social media usage aggravates overtourism. Specifically, social media is used by tourists to information-seeking, entertainment, self-presentation, and socialization for traveling. These roles of social media would evoke the traveling intention to a specific destination at a certain time, which further influences the tourist flow. When the tourist flow concentrate, the overtourism would be aggravated. This study contributes to the destination managers to deep-understand the cause-effect relationship between social media and overtourism in order to address this problem.Keywords: social media, overtourism, tourist flow, SEM, Maslow’s hierarchy of needs, Hangzhou
Procedia PDF Downloads 13539062 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India
Authors: Jhoga Parth, T. Nasar, K. V. Anand
Abstract:
An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation
Procedia PDF Downloads 25839061 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy
Procedia PDF Downloads 52839060 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems
Authors: Seada Hussen, Frie Ayalew
Abstract:
Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller
Procedia PDF Downloads 78