Search results for: Penosogan Formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3329

Search results for: Penosogan Formation

329 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 198
328 Geochemical Modeling of Mineralogical Changes in Rock and Concrete in Interaction with Groundwater

Authors: Barbora Svechova, Monika Licbinska

Abstract:

Geochemical modeling of mineralogical changes of various materials in contact with an aqueous solution is an important tool for predicting the processes and development of given materials at the site. The modeling focused on the mutual interaction of groundwater at the contact with the rock mass and its subsequent influence on concrete structures. The studied locality is located in Slovakia in the area of the Liptov Basin, which is a significant inter-mountain lowland, which is bordered on the north and south by the core mountains belt of the Tatras, where in the center the crystalline rises to the surface accompanied by Mesozoic cover. Groundwater in the area is bound to structures with complicated geological structures. From the hydrogeological point of view, it is an environment with a crack-fracture character. The area is characterized by a shallow surface circulation of groundwater without a significant collector structure, and from a chemical point of view, groundwater in the area has been classified as calcium bicarbonate with a high content of CO2 and SO4 ions. According to the European standard EN 206-1, these are waters with medium aggression towards the concrete. Three rock samples were taken from the area. Based on petrographic and mineralogical research, they were evaluated as calcareous shale, micritic limestone and crystalline shale. These three rock samples were placed in demineralized water for one month and the change in the chemical composition of the water was monitored. During the solution-rock interaction there was an increase in the concentrations of all major ions, except nitrates. There was an increase in concentration after a week, but at the end of the experiment, the concentration was lower than the initial value. Another experiment was the interaction of groundwater from the studied locality with a concrete structure. The concrete sample was also left in the water for 1 month. The results of the experiment confirmed the assumption of a reduction in the concentrations of calcium and bicarbonate ions in water due to the precipitation of amorphous forms of CaCO3 on the surface of the sample.Vice versa, it was surprising to increase the concentration of sulphates, sodium, iron and aluminum due to the leaching of concrete. Chemical analyzes from these experiments were performed in the PHREEQc program, which calculated the probability of the formation of amorphous forms of minerals. From the results of chemical analyses and hydrochemical modeling of water collected in situ and water from experiments, it was found: groundwater at the site is unsaturated and shows moderate aggression towards reinforced concrete structures according to EN 206-1a, which will affect the homogeneity and integrity of concrete structures; from the rocks in the given area, Ca, Na, Fe, HCO3 and SO4. Unsaturated waters will dissolve everything as soon as they come into contact with the solid matrix. The speed of this process then depends on the physicochemical parameters of the environment (T, ORP, p, n, water retention time in the environment, etc.).

Keywords: geochemical modeling, concrete , dissolution , PHREEQc

Procedia PDF Downloads 197
327 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 135
326 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 176
325 Analysis of Interparticle interactions in High Waxy-Heavy Clay Fine Sands for Sand Control Optimization

Authors: Gerald Gwamba

Abstract:

Formation and oil well sand production is one of the greatest and oldest concerns for the Oil and gas industry. The production of sand particles may vary from very small and limited amounts to far elevated levels which has the potential to block or plug the pore spaces near the perforated points to blocking production from surface facilities. Therefore, the timely and reliable investigation of conditions leading to the onset or quantifying sanding while producing is imperative. The challenges of sand production are even more elevated while producing in Waxy and Heavy wells with Clay Fine sands (WHFC). Existing research argues that both waxy and heavy hydrocarbons exhibit far differing characteristics with waxy more paraffinic while heavy crude oils exhibit more asphaltenic properties. Moreover, the combined effect of WHFC conditions presents more complexity in production as opposed to individual effects that could be attributed to a consolidation of a surmountable opposing force. However, research on a combined high WHFC system could depict a better representation of the surmountable effect which in essence is more comparable to field conditions where a one-sided view of either individual effects on sanding has been argued to some extent misrepresentative of actual field conditions since all factors act surmountably. In recognition of the limited customized research on sand production studies with the combined effect of WHFC however, our research seeks to apply the Design of Experiments (DOE) methodology based on latest literature to analyze the relationship between various interparticle factors in relation to selected sand control methods. Our research aims to unearth a better understanding of how the combined effect of interparticle factors including: strength, cementation, particle size and production rate among others could better assist in the design of an optimal sand control system for the WHFC well conditions. In this regard, we seek to answer the following research question: How does the combined effect of interparticle factors affect the optimization of sand control systems for WHFC wells? Results from experimental data collection will inform a better justification for a sand control design for WHFC. In doing so, we hope to contribute to earlier contrasts arguing that sand production could potentially enable well self-permeability enhancement caused by the establishment of new flow channels created by loosening and detachment of sand grains. We hope that our research will contribute to future sand control designs capable of adapting to flexible production adjustments in controlled sand management. This paper presents results which are part of an ongoing research towards the authors' PhD project in the optimization of sand control systems for WHFC wells.

Keywords: waxy-heavy oils, clay-fine sands, sand control optimization, interparticle factors, design of experiments

Procedia PDF Downloads 131
324 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 227
323 Use of Low-Cost Hydrated Hydrogen Sulphate-Based Protic Ionic Liquids for Extraction of Cellulose-Rich Materials from Common Wheat (Triticum Aestivum) Straw

Authors: Chris Miskelly, Eoin Cunningham, Beatrice Smyth, John. D. Holbrey, Gosia Swadzba-Kwasny, Emily L. Byrne, Yoan Delavoux, Mantian Li.

Abstract:

Recently, the use of ionic liquids (ILs) for the preparation of lignocellulose derived cellulosic materials as alternatives to petrochemical feedstocks has been the focus of considerable research interest. While the technical viability of IL-based lignocellulose treatment methodologies has been well established, the high cost of reagents inhibits commercial feasibility. This work aimed to assess the technoeconomic viability of the preparation of cellulose rich materials (CRMs) using protic ionic liquids (PILs) synthesized from low cost alkylamines and sulphuric acid. For this purpose, the tertiary alkylamines, triethylamine, and dimethylbutylamine were selected. Bulk scale production cost of the synthesized PILs, triethylammonium hydrogen sulphate and dimetheylbutylammonium hydrogen sulphate, was reported as $0.78 kg-1 to $1.24 kg-1. CRMs were prepared through the treatment of common wheat (Triticum aestivum) straw with these PILs. By controlling treatment parameters, CRMs with a cellulose content of ≥ 80 wt% were prepared. This was achieved using a T. aestivum straw to PIL loading ratio of 1:15 w/w, a treatment duration of 180 minutes, and ethanol as a cellulose antisolvent. Infrared spectra data and decreased onset degradation temperature of CRMs (ΔTONSET ~ 70 °C) suggested the formation of cellulose sulphate esters during treatment. Chemical derivatisation can aid the dispersion of prepared CRMs in non-polar polymer/ composite matrices, but act as a barrier to thermal processing at temperatures above 150 °C. It was also shown that treatment increased the crystallinity of CRMs (ΔCrI ~ 40 %) without altering the native crystalline structure or crystallite size (~ 2.6 nm) of cellulose; peaks associated with the cellulose I crystalline planes (110), (200), and (004) were observed at Bragg angles 16.0 °, 22.5 ° and 35.0 ° respectively. This highlighted the inability of assessed PILs to dissolve crystalline cellulose and was attributed to the high acidity (pKa ~ - 1.92 to - 6.42) of sulphuric acid derived anions. Electron micrographs revealed that the stratified multilayer tissue structure of untreated T. aestivum straw was significantly modified during treatment. T. aestivum straw particles were disassembled during treatment, with prepared CRMs adopting a golden-brown film-like appearance. This work demonstrated the degradation of non-cellulosic fractions of lignocellulose without dissolution of cellulose. It is the first to report on the derivatisation of cellulose during treatment with protic hydrogen sulphate ionic liquids, and the potential implications of this with reference to biopolymer feedstock preparation.

Keywords: cellulose, extraction, protic ionic liquids, esterification, thermal stability, waste valorisation, biopolymer feedstock

Procedia PDF Downloads 36
322 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 119
321 The Use of Platelet-rich Plasma in the Treatment of Diabetic Foot Ulcers: A Scoping Review

Authors: Kiran Sharma, Viktor Kunder, Zerha Rizvi, Ricardo Soubelet

Abstract:

Platelet rich plasma (PRP) has been recognized as a method of treatment in medicine since the 1980s. It primarily functions by releasing cytokines and growth factors that promote wound healing; these growth promoting factors released by PRP enact new processes such as angiogenesis, collagen deposition, and tissue formation that can change wound healing outcomes. Many studies recognize that PRP aids in chronic wound healing, which is advantageous for patients who suffer from chronic diabetic foot ulcers (DFUs). This scoping review aims to examine literature to identify the efficacy of PRP use in the healing of DFUs. Following PRISMA guidelines, we searched randomized-controlled trials involving PRP use in diabetic patients with foot ulcers using PubMed, Medline, CINAHL Complete, and Cochrane Database of Systematic Reviews. We restricted the search to articles published during 2005-2022, full texts in the English language, articles involving patients aged 19 years or older, articles that used PRP on specifically DFUs, articles that included a control group, articles on human subjects. The initial search yielded 119 articles after removing duplicates. Final analysis for relevance yielded 8 articles. In all cases except one, the PRP group showed either faster healing, more complete healing, or a larger percentage of healed participants. There were no situations in the included studies where the control group had a higher rate of healing or decreased wound size as compared to a group with isolated PRP-only use. Only one study did not show conclusive evidence that PRP caused accelerated healing in DFUs, and this study did not have an isolated PRP variable group. Application styles of PRP for treatment were shown to influence the level of healing in patients, with injected PRP appearing to achieve the best results as compared to topical PRP application. However, this was not conclusive due to the involvement of several other variables. Two studies additionally found PRP to be useful in healing refractory DFUs, and one study found that PRP use in patients with additional comorbidities was still more effective in healing DFUs than the standard control groups. The findings of this review suggest that PRP is a useful tool in reducing healing times and improving rates of complete wound healing in DFUs. There is room for further research in the application styles of PRP before conclusive statements can be made on the efficacy of injected versus topical PRP healing based on the findings in this study. The results of this review provide a baseline for further research in PRP use in diabetic patients and can be used by both physicians and public health experts to guide future treatment options for DFUs.

Keywords: diabetic foot ulcer, DFU, platelet rich plasma, PRP

Procedia PDF Downloads 75
320 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil

Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.

Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy

Procedia PDF Downloads 244
319 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad's Igneous complex, carbon dioxide generation, migration in the Bahi sandstone reservoir, lower cretaceous Bahi Sandstone

Procedia PDF Downloads 101
318 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad’s Igneous Complex, carbon dioxide generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone

Procedia PDF Downloads 103
317 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 145
316 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field

Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed

Abstract:

Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.

Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry

Procedia PDF Downloads 312
315 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 197
314 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties

Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts

Abstract:

Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.

Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition

Procedia PDF Downloads 231
313 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 42
312 Female Fans in Global Football Governance: A Call for Change

Authors: Yaron Covo, Tamar Kofman, Shira Palti

Abstract:

Over the recent decades, debates about the engagement of fans in football governance have focused on the club level and national level, emphasizing the significance of fans’ involvement in increasing the connection of clubs with the community, and in safeguarding the transparency, accountability, and clubs’ financial stability. This paper will offer a different conceptual justification for providing fans with access to decision-making processes in football. First, it will suggest that the participation of fans is necessary for addressing discriminatory practices against women in football stadiums. Second, it will argue that fans’ involvement in football governance is important not only at the club and national level but also at the global level, relying on the principles of Global Administrative Law. In contemporary men’s football, female fans face different forms of discrimination. Iranian women are still prohibited from attending football games at the domestic level; In Saudi Arabia, female fans are only permitted to enter designated family areas; Qatar – the host of the 2022 FIFA world cup – requires women to attend matches wearing modest clothing. Similarly, in Turkey, Lebanon, UAE, and Algeria, women face cultural barriers when attending men’s football games. In other countries, female fans suffer from subtle discrimination, including micro-aggressions, misogyny, sexism, and noninstitutionalized exclusion. Despite the vital role of fans in world football and the importance of football for many women’s lives, little has been done to address this problem. While FIFA recognizes that these discriminatory practices contradict its statutes, this recognition fails to materialize into meaningful change. This paper will argue that FIFA’s omission stems from two interrelated characteristics of world football: (1) the ultra-masculine nature of the game; (2) the insufficient recognition of fans’ significance. While fans have been given a voice in various football bodies on the domestic level, FIFA has yet to allow the representation of fans as stakeholders in world football governance. Since fans are a more heterogeneous group than players, the voices of those fans who do not fit the ultra-masculine model are not heard. Thus, by focusing mainly on male players, FIFA reproduces the hegemonic masculinity that feeds back into fan dynamics and marginalizes female fans. To rectify this problem, we will call on FIFA to provide fans and female fans in particular, with voice mechanisms and access to decision-making processes. In addition to its impact on the formation of fans’ identities, such a move will allow fans to demand better enforcement of existing anti-discrimination norms and new regulations to address their needs. The literature has yet to address the relationship between fans’ gender discrimination and global football governance. Building on Global Administrative Law scholarship and feminist theories, this paper will aim to fill this gap.

Keywords: fans, FIFA, football governance, gender discrimination, global administrative law, human rights

Procedia PDF Downloads 149
311 Reactivities of Turkish Lignites during Oxygen Enriched Combustion

Authors: Ozlem Uguz, Ali Demirci, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost.

Keywords: coal, energy, oxygen enriched combustion, reactivity

Procedia PDF Downloads 274
310 Financial Analysis of the Foreign Direct in Mexico

Authors: Juan Peña Aguilar, Lilia Villasana, Rodrigo Valencia, Alberto Pastrana, Martin Vivanco, Juan Peña C

Abstract:

Each year a growing number of companies entering Mexico in search of the domestic market share. These activities, including stores, telephone long distance and local raw materials and energy, and particularly the financial sector, have managed to significantly increase its weight in the flows of FDI in Mexico , however, you should consider whether these trends FDI are positive for the Mexican economy and these activities increase Mexican exports in the medium term , and its share in GDP , gross fixed capital formation and employment. In general stresses that these activities, by far, have been unable to significantly generate linkages with the rest of the economy, a process that has not favored with competitiveness policies and activities aimed at these neutral or horizontal. Since the nineties foreign direct investment (FDI) has shown a remarkable dynamism, both internationally and in Latin America and in Mexico. Only in Mexico the first recipient of FDI in importance in Latin America during 1990-1995 and was displaced by Brazil since FDI increased from levels below 1 % of GDP during the eighties to around 3 % of GDP during the nineties. Its impact has been significant not only from a macroeconomic perspective , it has also allowed the generation of a new industrial production structure and organization, parallel to a significant modernization of a segment of the economy. The case of Mexico also is particularly interesting and relevant because the destination of FDI until 1993 had focused on the purchase of state assets during privatization process. This paper aims to present FDI flows in Mexico and analyze the different business strategies that have been touched and encouraged by the FDI. On the one hand, looking briefly discuss regulatory issues and source and recipient of FDI sectors. Furthermore, the paper presents in more detail the impacts and changes that generated the FDI contribution of FDI in the Mexican economy , besides the macroeconomic context and later legislative changes that resulted in the current regulations is examined around FDI in Mexico, including aspects of the Free Trade Agreement (NAFTA). It is worth noting that foreign investment can not only be considered from the perspective of the receiving economic units. Instead, these flows also reflect the strategic interests of transnational corporations (TNCs) and other companies seeking access to markets and increased competitiveness of their production networks and global distribution, among other reasons. Similarly it is important to note that foreign investment in its various forms is critically dependent on historical and temporal aspects. Thus, the same functionality can vary significantly depending on the specific characteristics of both receptor units as sources of FDI, including macroeconomic, institutional, industrial organization, and social aspects, among others.

Keywords: foreign direct investment (FDI), competitiveness, neoliberal regime, globalization, gross domestic product (GDP), NAFTA, macroeconomic

Procedia PDF Downloads 450
309 Mannose-Functionalized Lipopolysaccharide Nanoparticles for Macrophage-Targeted Dual Delivery of Rifampicin and Isoniazid

Authors: Mumuni Sumaila, Viness Pillay, Yahya E. Choonara, Pradeep Kumar, Pierre P. Kondiah

Abstract:

Tuberculosis (TB) remains a serious challenge to public health globally, despite every effort put together to curb the disease. Current TB therapeutics available have proven to be inefficient due to a multitude of drawbacks that range from serious adverse effects/drug toxicity to inconsistent bioavailability, which ultimately contributes to the emergence of drug-resistant TB. An effective ‘cargo’ system designed to cleverly deliver therapeutic doses of anti-TB drugs to infection sites and in a sustained-release manner may provide a better therapeutic choice towards winning the war against TB. In the current study, we investigated mannose-functionalized lipopolysaccharide hybrid nanoparticles for safety and efficacy towards macrophage-targeted simultaneous delivery of the two first-line anti-TB drugs, rifampicin (RF) and isoniazid (IS). RF-IS-loaded lipopolysaccharide hybrid nanoparticles were fabricated using the solvent injection technique (SIT), incorporating soy lecithin (SL) and low molecular weight chitosan (CS) as the lipid and polysaccharide components, respectively. Surface-functionalized nanoparticles were obtained through the reaction of the aldehyde group of mannose with free amine functionality present at the surface of the nanoparticles. The functionalized nanocarriers were spherical with average particle size and surface charge of 107.83 nm and +21.77 mV, respectively, and entrapment efficiencies (EE) were 53.52% and 69.80% for RF and IS, respectively. FTIR spectrum revealed high-intensity bands between 1663 cm⁻¹ and 1408 cm⁻¹ wavenumbers (absent in non-functionalized nanoparticles), which could be attributed to the C=N stretching vibration produced by the formation of Schiff’s base (–N=CH–) during the mannosylation reaction. In vitro release studies showed a sustained-release profile for RF and IS, with less than half of the total payload released over a 48-hour period. The nanocarriers were biocompatible and safe, with more than 80% cell viability achieved when incubated with RAW 264.7 cells at concentrations 30 to 500 μg/mL over a 24-hour period. Cellular uptake studies (after a 24-hour incubation period with the murine macrophage cells, RAW 264.7) revealed a 13- and a 9-fold increase in intracellular accumulation of RF and IS, respectively, when compared with the unformulated RF+IS solution. A 6- and a 3-fold increase in intracellular accumulation of RF and IS, respectively, were observed when compared with the non-functionalized nanoparticles. Furthermore, fluorescent microscopy images showed nanoparticle internalization and accumulation within the RAW 264.7 cells, which was more significant in the mannose-functionalized system compared to the non-functionalized nanoparticles. The overall results suggested that the fabricated mannose-functionalized lipopolysaccharide nanoparticles are a safe and promising platform for macrophage-targeted delivery of anti-TB therapeutics. However, in vivo pharmacokinetic/pharmacodynamics studies are required to further substantiate the therapeutic efficacy of the nanosystem.

Keywords: anti-tuberculosis therapeutics, hybrid nanosystem, lipopolysaccharide nanoparticles, macrophage-targeted delivery

Procedia PDF Downloads 172
308 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 39
307 Determining the Threshold for Protective Effects of Aerobic Exercise on Aortic Structure in a Mouse Model of Marfan Syndrome Associated Aortic Aneurysm

Authors: Christine P. Gibson, Ramona Alex, Michael Farney, Johana Vallejo-Elias, Mitra Esfandiarei

Abstract:

Aortic aneurysm is the leading cause of death in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1 gene (FBN1). MFS aneurysm is characterized by weakening of the aortic wall due to elastin fibers fragmentation and disorganization. The above-average height and distinct physical features make young adults with MFS desirable candidates for competitive sports; but little is known about the exercise limit at which they will be at risk for aortic rupture. On the other hand, aerobic cardiovascular exercise has been shown to have protective effects on the heart and aorta. We have previously reported that mild aerobic exercise can delay the formation of aortic aneurysm in a mouse model of MFS. In this study, we aimed to investigate the effects of various levels of exercise intensity on the progression of aortic aneurysm in the mouse model. Starting at 4 weeks of age, we subjected control and MFS mice to different levels of exercise intensity (8m/min, 10m/min, 15m/min, and 20m/min, corresponding to 55%, 65%, 75%, and 85% of VO2 max, respectively) on a treadmill for 30 minutes per day, five days a week for the duration of the study. At 24 weeks of age, aortic tissue were isolated and subjected to structural and functional studies using histology and wire myography in order to evaluate the effects of different exercise routines on elastin fragmentation and organization and aortic wall elasticity/stiffness. Our data shows that exercise training at the intensity levels between 55%-75% significantly reduces elastin fragmentation and disorganization, with less recovery observed in 85% MFS group. The reversibility of elasticity was also significantly restored in MFS mice subjected to 55%-75% intensity; however, the recovery was less pronounced in MFS mice subjected to 85% intensity. Furthermore, our data shows that smooth muscle cells (SMCs) contractilion in response to vasoconstrictor agent phenylephrine (100nM) is significantly reduced in MFS aorta (54.84 ± 1.63 mN/mm2) as compared to control (95.85 ± 3.04 mN/mm2). At 55% of intensity, exercise did not rescue SMCs contraction (63.45 ± 1.70 mN/mm2), while at higher intensity levels, SMCs contraction in response to phenylephrine was restored to levels similar to control aorta [65% (81.88 ± 4.57 mN/mm2), 75% (86.22 ± 3.84 mN/mm2), and 85% (83.91 ± 5.42 mN/mm2)]. This study provides the first time evidence that high intensity exercise (e.g. 85%) may not provide the most beneficial effects on aortic function (vasoconstriction) and structure (elastin fragmentation, aortic wall elasticity) during the progression of aortic aneurysm in MFS mice. On the other hand, based on our observations, medium intensity exercise (e.g. 65%) seems to provide the utmost protective effects on aortic structure and function in MFS mice. These findings provide new insights into the potential capacity, in which MFS patients could participate in various aerobic exercise routines, especially in young adults affected by cardiovascular complications particularly aortic aneurysm. This work was funded by Midwestern University Research Fund.

Keywords: aerobic exercise, aortic aneurysm, aortic wall elasticity, elastin fragmentation, Marfan syndrome

Procedia PDF Downloads 381
306 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids

Authors: Ayalew Yimam Ali

Abstract:

The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.

Procedia PDF Downloads 20
305 Solid Waste and Its Impact on the Human Health

Authors: Waseem Akram, Hafiz Azhar Ali Khan

Abstract:

Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.

Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases

Procedia PDF Downloads 278
304 Dialysis Access Surgery for Patients in Renal Failure: A 10-Year Institutional Experience

Authors: Daniel Thompson, Muhammad Peerbux, Sophie Cerutti, Hansraj Bookun

Abstract:

Introduction: Dialysis access is a key component of the care of patients with end stage renal failure. In our institution, a combined service of vascular surgeons and nephrologists are responsible for the creation and maintenance of arteriovenous fisultas (AVF), tenckhoff cathethers and Hickman/permcath lines. This poster investigates the last 10 years of dialysis access surgery conducted at St. Vincent’s Hospital Melbourne. Method: A cross-sectional retrospective analysis was conducted of patients of St. Vincent’s Hospital Melbourne (Victoria, Australia) utilising data collection from the Australasian Vascular Audit (Australian and New Zealand Society for Vascular Surgery). Descriptive demographic analysis was carried out as well as operation type, length of hospital stays, postoperative deaths and need for reoperation. Results: 2085 patients with renal failure were operated on between the years of 2011 and 2020. 1315 were male (63.1%) and 770 were female (36.9%). The mean age was 58 (SD 13.8). 92% of patients scored three or greater on the American Society of Anesthiologiests classification system. Almost half had a history of ischaemic heart disease (48.4%), more than half had a history of diabetes (64%), and a majority had hypertension (88.4%). 1784 patients had a creatinine over 150mmol/L (85.6%), the rest were on dialysis (14.4%). The most common access procedure was AVF creation, with 474 autologous AVFs and 64 prosthetic AVFs. There were 263 Tenckhoff insertions. We performed 160 cadeveric renal transplants. The most common location for AVF formation was brachiocephalic (43.88%) followed by radiocephalic (36.7%) and brachiobasilic (16.67%). Fistulas that required re-intervention were most commonly angioplastied (n=163), followed by thrombectomy (n=136). There were 107 local fistula repairs. Average length of stay was 7.6 days, (SD 12). There were 106 unplanned returns to theatre, most commonly for fistula creation, insertion of tenckhoff or permacath removal (71.7%). There were 8 deaths in the immediately postoperative period. Discussion: Access to dialysis is vital for patients with end stage kidney disease, and requires a multidisciplinary approach from both nephrologists, vascular surgeons, and allied health practitioners. Our service provides a variety of dialysis access methods, predominately fistula creation and tenckhoff insertion. Patients with renal failure are heavily comorbid, and prolonged hospital admission following surgery is a source of significant healthcare expenditure. AVFs require careful monitoring and maintenance for ongoing utility, and our data reflects a multitude of operations required to maintain usable access. The requirement for dialysis is growing worldwide and our data demonstrates a local experience in access, with preferred methods, common complications and the associated surgical interventions.

Keywords: dialysis, fistula, nephrology, vascular surgery

Procedia PDF Downloads 113
303 The Effect of Slum Neighborhoods on Pregnancy Outcomes in Tanzania: Secondary Analysis of the 2015-2016 Tanzania Demographic and Health Survey Data

Authors: Luisa Windhagen, Atsumi Hirose, Alex Bottle

Abstract:

Global urbanization has resulted in the expansion of slums, leaving over 10 million Tanzanians in urban poverty and at risk of poor health. Whilst rural residence has historically been associated with an increased risk of adverse pregnancy outcomes, recent studies found higher perinatal mortality rates in urban Tanzania. This study aims to understand to what extent slum neighborhoods may account for the spatial disparities seen in Tanzania. We generated a slum indicator based on UN-HABITAT criteria to identify slum clusters within the 2015-2016 Tanzania Demographic and Health Survey. Descriptive statistics, disaggregated by urban slum, urban non-slum, and rural areas, were produced. Simple and multivariable logistic regression examined the association between cluster residence type and neonatal mortality and stillbirth. For neonatal mortality, we additionally built a multilevel logistic regression model, adjusting for confounding and clustering. The neonatal mortality ratio was highest in slums (38.3 deaths per 1000 live births); the stillbirth rate was three times higher in slums (32.4 deaths per 1000 births) than in urban non-slums. Neonatal death was more likely to occur in slums than in urban non-slums (aOR=2.15, 95% CI=1.02-4.56) and rural areas (aOR=1.78, 95% CI=1.15-2.77). Odds of stillbirth were over five times higher among rural than urban non-slum residents (aOR=5.25, 95% CI=1.31-20.96). The results suggest that slums contribute to the urban disadvantage in Tanzanian neonatal health. Higher neonatal mortality in slums may be attributable to lack of education, lower socioeconomic status, poor healthcare access, and environmental factors, including indoor and outdoor air pollution and unsanitary conditions from inadequate housing. However, further research is required to ascertain specific causalities as well as significant associations between residence type and other pregnancy outcomes. The high neonatal mortality, stillbirth, and slum formation rates in Tanzania signify that considerable change is necessary to achieve international goals for health and human settlements. Disparities in access to adequate housing, safe water and sanitation, high standard antenatal, intrapartum, and neonatal care, and maternal education need to urgently be addressed. This study highlights the spatial neonatal mortality shift from rural settings to urban informal settlements in Tanzania. Importantly, other low- and middle-income countries experiencing overwhelming urbanization and slum expansion may also be at risk of a reversing trend in residential neonatal health differences.

Keywords: urban health, slum residence, neonatal mortality, stillbirth, global urbanisation

Procedia PDF Downloads 64
302 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure

Authors: Xiaoling Ren, Guidong Yang

Abstract:

Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.

Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃

Procedia PDF Downloads 170
301 Captive Insurance in Hong Kong and Singapore: A Promising Risk Management Solution for Asian Companies

Authors: Jin Sheng

Abstract:

This paper addresses a promising area of insurance sector to develop in Asia. Captive insurance, which provides risk-mitigation services for its parent company, has great potentials to develop in energy, infrastructure, agriculture, logistics, catastrophe, and alternative risk transfer (ART), and will greatly affect the framework of insurance industry. However, the Asian captive insurance market only takes a small proportion in the global market. The recent supply chain interruption case of Hanjin Shipping indicates the significance of risk management for an Asian company’s sustainability and resilience. China has substantial needs and great potentials to develop captive insurance, on account of the currency volatility, enterprises’ credit risks, and legal and operational risks of the Belt and Road initiative. Up to date, Mainland Chinese enterprises only have four offshore captives incorporated by CNOOC, Sinopec, Lenovo and CGN Power), three onshore captive insurance companies incorporated by CNPC, China Railway, and COSCO, as well as one industrial captive insurance organization - China Ship-owners Mutual Assurance Association. Its captive market grows slowly with one or two captive insurers licensed yearly after September 2011. As an international financial center, Hong Kong has comparative advantages in taxation, professionals, market access and well-established financial infrastructure to develop a functional captive insurance market. For example, Hong Kong’s income tax for an insurance company is 16.5%; while China's income tax for an insurance company is 25% plus business tax of 5%. Furthermore, restrictions on market entry and operations of China’s onshore captives make establishing offshore captives in international or regional captive insurance centers such as Singapore, Hong Kong, and other overseas jurisdictions to become attractive options. Thus, there are abundant business opportunities in this area. Using methodology of comparative studies and case analysis, this paper discusses the incorporation, regulatory issues, taxation and prospect of captive insurance market in Hong Kong, China and Singapore. Hong Kong and Singapore are both international financial centers with prominent advantages in tax concessions, technology, implementation, professional services, and well-functioning legal system. Singapore, as the domicile of 71 active captives, has been the largest captive insurance hub in Asia, as well as an established reinsurance hub. Hong Kong is an emerging captive insurance hub with 5 to 10 newly licensed captives each year, according to the Hong Kong Financial Services Development Council. It is predicted that Hong Kong will become a domicile for 50 captive insurers by 2025. This paper also compares the formation of a captive in Singapore with other jurisdictions such as Bermuda and Vermont.

Keywords: Alternative Risk Transfer (ART), captive insurance company, offshore captives, risk management, reinsurance, self-insurance fund

Procedia PDF Downloads 229
300 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 345