Search results for: replica material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6697

Search results for: replica material

3727 Detection of Pharmaceutical Personal Protective Equipment in Video Stream

Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva

Abstract:

Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.

Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE

Procedia PDF Downloads 87
3726 Review on Wear Behavior of Magnesium Matrix Composites

Authors: Amandeep Singh, Niraj Bala

Abstract:

In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites.

Keywords: hardness, magnesium matrix composites, reinforcement, wear

Procedia PDF Downloads 332
3725 Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method

Authors: Pramod Keshav Kolase, Atul K. Desai

Abstract:

This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes.

Keywords: compressive strength, dynamic elastic modulus, fly ash, fiber, roller compacted concrete, ultrasonic pulse velocity

Procedia PDF Downloads 218
3724 Hydrodynamic Behaviour Study of Fast Mono-Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis

Authors: Mohammad Sadeghian, Mohsen Sadeghian

Abstract:

In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. For hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected as carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed, as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.

Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics

Procedia PDF Downloads 281
3723 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)

Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger

Abstract:

Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.

Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction

Procedia PDF Downloads 138
3722 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance

Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal

Abstract:

Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.

Keywords: biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR

Procedia PDF Downloads 391
3721 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 163
3720 Comparison of Comorbidity of Six Pathological Areas of MMPI and SCL-90-R Tests of Obsessive–Compulsive Patients

Authors: Fahimeh Rafiezadeh, Mehdi Khanbani

Abstract:

Aim:The goal of this research is to compare the comorbidity of mental disorders of obsessive–compulsive patients between multiplasic Minesota Personality Inventory (MMPI)and symptom checklist -90-R(SCL-90-R). Material and Method: In sorting, 50 individuals: 25 male and 25 female who were compulsive, were selected samples. The comparison was made in 6 pathological areas (somatoform, Depression, Anxiety, Paranoid, Phsychotism, and antisocial disorders). Frequencies were analyzed with chi-squre test. Results: results was concluded: In comparison between two sexes, there was a significant difference of frequency in depression disorder. Comparing the two tests, there was a significant difference of frequency between paranoid, depression and psychoticism disorders. Depression disorder had the highest comorbidity and antisocial disorder had the lowest comorbidity among male females and total. Conclusion: The depression has most comorbidity in OCD and is very important in the trapt of this patients.

Keywords: obsessive, compulsive disorder, comorbidity, MMPI test, SCL-90–R test

Procedia PDF Downloads 452
3719 Polymer Application in Fashion and Textile Engineering

Authors: Fatemeh Karimi

Abstract:

The fashion and textile industry is undergoing a profound transformation, with polymers playing an increasingly pivotal role in driving innovation and sustainability. This paper explores the application of polymers in fashion and textile engineering, focusing on their impact on material properties, sustainability, and the future of garment production. Polymers, both synthetic and bio-based, offer unique opportunities to enhance the performance, durability, and environmental footprint of textiles. By examining recent advancements in polymer science and their integration into fashion design and production, we provide insights into how these materials are reshaping the industry. This paper also discusses the challenges and opportunities associated with the use of polymers, particularly in the context of sustainable fashion and circular economy practices. Through case studies and industry examples, we highlight the innovative ways in which polymers are being utilized to meet the evolving demands of consumers and the industry's sustainability goals.

Keywords: polymer textiles, sustainable fashion, bio-based polymers, smart textiles, fashion innovation, circular economy, textile engineering

Procedia PDF Downloads 21
3718 Slope Stability Assessment of Himalayan Slope under Static and Seismic Conditions

Authors: P. Singh, S. Mittal

Abstract:

Stability of slope in Chamoli Distt. near River Alaknanda in Uttarakhand is essential to safeguard the infrastructure of the slope where a dam is proposed to be built near this slope. Every year the areas near the slope have been facing severe landslides (small or big) due to intensive precipitation inflicting substantial damages as per Geological Survey of India records. The stability analysis of the slope under static and pseudo static conditions are presented in this study by using FEM software PHASE2. As per the earthquake zonation map of India, the slope is found in zone V, and hence, pseudo static stability of slope has been performed considering pseudo static analysis. For analysing the slope Mohr-Coulomb shear strength criteria is adopted for soil material and self-drilling anchors are modelled as bolts with parameters like modulus of elasticity, diameter of anchors and peak pull-out resistance of the anchors with the soil present there. The slope is found to be unstable under pseudo static conditions with computed factor of safety= 0.93. Stability is provided to the slope by using Self Drilling Anchors (SDA) which gives factor of safety= 1.15 under pseudo static condition.

Keywords: FEM, pseudo static, self-drilling anchors, slope stability

Procedia PDF Downloads 247
3717 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab

Procedia PDF Downloads 326
3716 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke

Authors: Yadong Liu

Abstract:

The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.

Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag

Procedia PDF Downloads 149
3715 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 362
3714 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman

Abstract:

This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.

Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters

Procedia PDF Downloads 432
3713 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 241
3712 Burial Findings in Prehistory Qatar: Archaeological Perspective

Authors: Sherine El-Menshawy

Abstract:

Death, funerary beliefs and customs form an essential feature of belief systems and practices in many cultures. It is evident that during the pre-historical periods, various techniques of corpses burial and funerary rituals were conducted. Occasionally, corpses were merely buried in the sand, or in a grave where the body is placed in a contracted position- with knees drawn up under the chin and hands normally lying before the face- with mounds of sand, marking the grave or the bodies were burnt. However, common practice, that was demonstrable in the archaeological record, was burial. The earliest graves were very simple consisting of a shallow circular or oval pits in the ground. The current study focuses on the material culture at Qatar during the pre-historical period, specifically their funerary architecture and burial practices. Since information about burial customs and funerary practices in Qatar prehistory is both scarce and fragmentary, the importance of such study is to answer research questions related to funerary believes and burial habits during the early stages of civilization transformations at prehistory Qatar compared with Mesopotamia, since chronologically, the earliest pottery discovered in Qatar belongs to prehistoric Ubaid culture of Mesopotamia, that was collected from the excavations. This will lead to deep understanding of life and social status in pre-historical period at Qatar. The research also explores the relationship between pre-history Qatar funerary traditions and those of neighboring cultures in the Mesopotamia and Ancient Egypt, with the aim of ascertaining the distinctive aspects of pre-history Qatar culture, the reception of classical culture and the role it played in the creation of local cultural identities in the Near East. Methodologies of this study based on published books and articles in addition to unpublished reports of the Danish excavation team that excavated in and around Doha, Qatar archaeological sites from the 50th. The study is also constructed on compared material related to burial customs found in Mesopotamia. Therefore this current research: (i) Advances knowledge of the burial customs of the ancient people who inhabited Qatar, a study which is unknown recently to scholars, the study though will apply deep understanding of the history of ancient Qatar and its culture and values with an aim to share this invaluable human heritage. (ii) The study is of special significance for the field of studies, since evidence derived from the current study has great value for the study of living conditions, social structure, religious beliefs and ritual practices. (iii) Excavations brought to light burials of different categories. The graves date to the bronze and Iron ages. Their structure varies between mounds above the ground or burials below the ground level. Evidence comes from sites such as Al-Da’asa, Ras Abruk, and Al-Khor. Painted Ubaid sherds of Mesopotamian culture have been discovered in Qatar from sites such as Al-Da’asa, Ras Abruk, and Bir Zekrit. In conclusion, there is no comprehensive study which has been done and lack of general synthesis of information about funerary practices is problematic. Therefore, the study will fill in the gaps in the area.

Keywords: archaeological, burial, findings, prehistory, Qatar

Procedia PDF Downloads 150
3711 Crossing Borders: A Case Study on the Entry and Asylum of Sirius Refugees in Turkey

Authors: Stephanie M. De Oliveira

Abstract:

For a long time, migrations are characterized as a difficult problem to solve. Various phenomena throughout human history caused personnel migrations, whether by the free will of migrants or not. Nowadays, governments that seek to give these people protection and dignity, either to asylum or to build a new life in a different country, make refugee protection. At present, a large amount of people, have been crossing their country's borders by land, air or sea, becoming refugees and seeking a new life away from fear, threat or violence they suffered in their country of origin. It is known that some countries have already instituted rights and rules for refugees who wish to become citizens in the country to which they immigrated, even though this is not what happens in most cases. The article will be based on research made with UN Refugee Agency (UNHCR) material as well as will analyze the interaction of the Turkish government with the European Union. Since Turkey is not part of the Union, it will be understood how the interaction was made, as well as the search for consensus, and not only humanitarian but also financial aid. The treatment of refugees and the defense of human rights within the country will also be considered.

Keywords: refugees, Turkey, asylum seekers, United Nations

Procedia PDF Downloads 368
3710 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 498
3709 Antioxidant Activities, Chemical Components, Physicochemical, and Sensory Characteristics of Kecombrang Tea (Etlingera elatior)

Authors: Rifda Naufalin, Nurul Latifasari, Siti Nuryanti, Muna Ridha Hanifah

Abstract:

Kecombrang is a Zingiberaceae plant which has antioxidant properties. The high antioxidant content in kecombrang flowers has the potential to be processed as a functional beverage raw material so that it can be used as an ingredient in making herbal teas. The purpose of this study was to determine the chemical components, physicochemistry, antioxidant activity and sensory characteristics of kecombrang tea. The research methodology was carried out by using a completely randomized design with processing factors of kecombrang tea namely blanching and non-blanching, fermentation and non-fermentation, and the optimal time for drying kecombrang tea. The best treatment combination based on the effective index method is the treatment of the blanching process followed by drying at a temperature of 50ᵒC until the 2% moisture content can produce kecombrang tea with a total phenol content of 5.95 mg Tannic Acid Equivalent (TAE) / gram db, total flavonoid 3%, pH 4.5, and antioxidant activity 82.95%, red color, distinctive aroma of tea, fresh taste, and preferred by panelists.

Keywords: kecombrang tea, blanching, fermentation, total phenol, and antioxidant activity

Procedia PDF Downloads 148
3708 Numerical Methods for Topological Optimization of Wooden Structural Elements

Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu

Abstract:

The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.

Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions

Procedia PDF Downloads 39
3707 Systematic Review of Dietary Fiber Characteristics Relevant to Appetite and Energy Intake Outcomes in Clinical Intervention Trials of Healthy Humans

Authors: K. S. Poutanen, P. Dussort, A. Erkner, S. Fiszman, K. Karnik, M. Kristensen, C. F. M. Marsaux, S. Miquel-Kergoat, S. Pentikäinen, P. Putz, R. E. Steinert, J. Slavin, D. J. Mela

Abstract:

Dietary fiber (DF) intake has been associated with lower body weight or less weight gain. These effects are generally attributed to putative effects of DF on appetite. Many intervention studies have tested the effect of DFs on appetite-related measures, with inconsistent results. However, DF includes a wide category of different compounds with diverse chemical and physical characteristics, and correspondingly diverse effects in human digestion. Thus, inconsistent results between DF consumption and appetite are not surprising. The specific contribution of different compounds with varying physico-chemical properties to appetite control and the mediating mechanisms are not well characterized. This systematic review aimed to assess the influence of specific DF characteristics, including viscosity, gel forming capacity, fermentability, and molecular weight, on appetite-related outcomes in healthy humans. Medline and FSTA databases were searched for controlled human intervention trials, testing the effects of well-characterized DFs on subjective satiety/appetite or energy intake outcomes. Studies were included only if they reported: 1) fiber name and origin, and 2) data on viscosity, gelling properties, fermentability, or molecular weight of the DF materials tested. The search generated 3001 unique records, 322 of which were selected for further consideration from title and abstract screening. Of these, 149 were excluded due to insufficient fiber characterization and 124 for other reasons (not original article, not randomized controlled trial, or no appetite related outcome), leaving 49 papers meeting all the inclusion criteria, most of which reported results from acute testing (<1 day). The eligible 49 papers described 90 comparisons of DFs in foods, beverages or supplements. DF-containing material of interest was efficacious for at least one appetite-related outcome in 51/90 comparisons. Gel-forming DF sources were most consistently efficacious but there were no clear associations between viscosity, MW or fermentability and appetite-related outcomes. A considerable number of papers had to be excluded from the review due to shortcomings in fiber characterization. To build understanding about the impact of DF on satiety/appetite specifically there should be clear hypotheses about the mechanisms behind the proposed beneficial effect of DF material on appetite, and sufficient data about the DF properties relevant for the hypothesized mechanisms to justify clinical testing. The hypothesized mechanisms should also guide the decision about relevant duration of exposure in studies, i.e. are the effects expected to occur during acute time frame (related to stomach emptying, digestion rate, etc.) or develop from sustained exposure (gut fermentation mediated mechanisms). More consistent measurement methods and reporting of fiber specifications and characterization are needed to establish reliable structure-function relationships for DF and health outcomes.

Keywords: appetite, dietary fiber, physico-chemical properties, satiety

Procedia PDF Downloads 235
3706 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 92
3705 Earthquake Preparedness of School Community and E-PreS Project

Authors: A. Kourou, A. Ioakeimidou, S. Hadjiefthymiades, V. Abramea

Abstract:

During the last decades, the task of engaging governments, communities and citizens to reduce risk and vulnerability of the populations has made variable progress. Experience has demonstrated that lack of awareness, education and preparedness may result in significant material and other losses both on the onset of the disaster. Schools play a vital role in the community and are important elements of values and culture of the society. A proper school education not only teaches children, but also is a key factor in the promotion of a safety culture into the wider community. In Greece School Earthquake Safety Initiative has been undertaken by Earthquake Planning and Protection Ogranization with specific actions (seminars, lectures, guidelines, educational material, campaigns, national or EU projects, drills etc.). The objective of this initiative is to develop disaster-resilient school communities through awareness, self-help, cooperation and education. School preparedness requires the participation of Principals, teachers, students, parents, and competent authorities. Preparation and earthquake readiness involves: a) learning what should be done before, during, and after earthquake; b) doing or preparing to do these things now, before the next earthquake; and c) developing teachers’ and students’ skills to cope efficiently in case of an earthquake. In the above given framework this paper presents the results of a survey aimed to identify the level of education and preparedness of school community in Greece. More specifically, the survey questionnaire investigates issues regarding earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans at elementary and secondary schools. The questionnaires were administered to Principals and teachers from different regions of the country that attend the EPPO national training project 'Earthquake Safety at Schools'. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self protective actions b) existence of emergency planning at home and c) existence of emergency planning at school (hazard mitigation actions, evacuation plan, and performance of drills). Survey results revealed that a high percentage of teachers have taken the appropriate preparedness measures concerning non-structural hazards at schools, emergency school plan and simulation drills every year. In order to improve the action-planning for ongoing school disaster risk reduction, the implementation of earthquake drills, the involvement of students with disabilities and the evaluation of school emergency plans, EPPO participates in E-PreS project. The main objective of this project is to create smart tools which define, simulate and evaluate all hazards emergency steps customized to the unique district and school. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The project is supported by EU Civil Protection Financial Instrument with a duration of two years. Coordinator is the Kapodistrian University of Athens and partners are from four countries; Greece, Italy, Romania and Bulgaria.

Keywords: drills, earthquake, emergency plans, E-PreS project

Procedia PDF Downloads 235
3704 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.

Keywords: air viscosity, loudspeaker, cone paper, edge, optimization

Procedia PDF Downloads 401
3703 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel

Authors: Kittiphat Rattanachan

Abstract:

The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts.

Keywords: NC incremental forming, single point incremental forming, wall incline angle, formability

Procedia PDF Downloads 344
3702 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 203
3701 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section

Authors: Redouane Lombarkia

Abstract:

To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental results

Keywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA

Procedia PDF Downloads 95
3700 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: adsorption, desalination, refrigeration, seawater

Procedia PDF Downloads 495
3699 An Investigation into Sealing Materials for Vacuum Glazing

Authors: Paul Onyegbule, Harjit Singh

Abstract:

Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.

Keywords: double glazed windows, U-value, heat loss, borax powder, edge seal

Procedia PDF Downloads 237
3698 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels

Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang

Abstract:

Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.

Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA

Procedia PDF Downloads 402