Search results for: open data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27144

Search results for: open data

24174 Analysis of Brownfield Soil Contamination Using Local Government Planning Data

Authors: Emma E. Hellawell, Susan J. Hughes

Abstract:

BBrownfield sites are currently being redeveloped for residential use. Information on soil contamination on these former industrial sites is collected as part of the planning process by the local government. This research project analyses this untapped resource of environmental data, using site investigation data submitted to a local Borough Council, in Surrey, UK. Over 150 site investigation reports were collected and interrogated to extract relevant information. This study involved three phases. Phase 1 was the development of a database for soil contamination information from local government reports. This database contained information on the source, history, and quality of the data together with the chemical information on the soil that was sampled. Phase 2 involved obtaining site investigation reports for development within the study area and extracting the required information for the database. Phase 3 was the data analysis and interpretation of key contaminants to evaluate typical levels of contaminants, their distribution within the study area, and relating these results to current guideline levels of risk for future site users. Preliminary results for a pilot study using a sample of the dataset have been obtained. This pilot study showed there is some inconsistency in the quality of the reports and measured data, and careful interpretation of the data is required. Analysis of the information has found high levels of lead in shallow soil samples, with mean and median levels exceeding the current guidance for residential use. The data also showed elevated (but below guidance) levels of potentially carcinogenic polyaromatic hydrocarbons. Of particular concern from the data was the high detection rate for asbestos fibers. These were found at low concentrations in 25% of the soil samples tested (however, the sample set was small). Contamination levels of the remaining chemicals tested were all below the guidance level for residential site use. These preliminary pilot study results will be expanded, and results for the whole local government area will be presented at the conference. The pilot study has demonstrated the potential for this extensive dataset to provide greater information on local contamination levels. This can help inform regulators and developers and lead to more targeted site investigations, improving risk assessments, and brownfield development.

Keywords: Brownfield development, contaminated land, local government planning data, site investigation

Procedia PDF Downloads 140
24173 Carbon Footprint Assessment Initiative and Trees: Role in Reducing Emissions

Authors: Omar Alelweet

Abstract:

Carbon emissions are quantified in terms of carbon dioxide equivalents, generated through a specific activity or accumulated throughout the life stages of a product or service. Given the growing concern about climate change and the role of carbon dioxide emissions in global warming, this initiative aims to create awareness and understanding of the impact of human activities and identify potential areas for improvement regarding the management of the carbon footprint on campus. Given that trees play a vital role in reducing carbon emissions by absorbing CO₂ during the photosynthesis process, this paper evaluated the contribution of each tree to reducing those emissions. Collecting data over an extended period of time is essential to monitoring carbon dioxide levels. This will help capture changes at different times and identify any patterns or trends in the data. By linking the data to specific activities, events, or environmental factors, it is possible to identify sources of emissions and areas where carbon dioxide levels are rising. Analyzing the collected data can provide valuable insights into ways to reduce emissions and mitigate the impact of climate change.

Keywords: sustainability, green building, environmental impact, CO₂

Procedia PDF Downloads 71
24172 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 457
24171 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia PDF Downloads 302
24170 Productivity and Structural Design of Manufacturing Systems

Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva

Abstract:

Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.

Keywords: productivity, structure, manufacturing systems, structural design

Procedia PDF Downloads 585
24169 The Effect of Tacit Knowledge for Intelligence Cycle

Authors: Bahadir Aydin

Abstract:

It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.

Keywords: information, intelligence cycle, knowledge, tacit Knowledge

Procedia PDF Downloads 514
24168 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 145
24167 Implementation Association Rule Method in Determining the Layout of Qita Supermarket as a Strategy in the Competitive Retail Industry in Indonesia

Authors: Dwipa Rizki Utama, Hanief Ibrahim

Abstract:

The development of industry retail in Indonesia is very fast, various strategy was undertaken to boost the customer satisfaction and the productivity purchases to boost the profit, one of which is implementing strategies layout. The purpose of this study is to determine the layout of Qita supermarket, a retail industry in Indonesia, in order to improve customer satisfaction and to maximize the rate of products’ sale as a whole, so as the infrequently purchased products will be purchased. This research uses a literature study method, and one of the data mining methods is association rule which applied in market basket analysis. Data were tested amounted 100 from 160 after pre-processing data, so then the distribution department and 26 departments corresponding to the data previous layout will be obtained. From those data, by the association rule method, customer behavior when purchasing items simultaneously can be studied, so then the layout of the supermarket based on customer behavior can be determined. Using the rapid miner software by the minimal support 25% and minimal confidence 30% showed that the 14th department purchased at the same time with department 10, 21st department purchased at the same time with department 13, 15th department purchased at the same time with department 12, 14th department purchased at the same time with department 12, and 10th department purchased at the same time with department 14. From those results, a better supermarket layout can be arranged than the previous layout.

Keywords: industry retail, strategy, association rule, supermarket

Procedia PDF Downloads 189
24166 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design

Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell

Abstract:

The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.

Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity

Procedia PDF Downloads 145
24165 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh

Procedia PDF Downloads 226
24164 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors

Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane

Abstract:

The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.

Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate

Procedia PDF Downloads 63
24163 Transforming Data Science Curriculum Through Design Thinking

Authors: Samar Swaid

Abstract:

Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.

Keywords: data science, design thinking, AI, currculum, transformation

Procedia PDF Downloads 81
24162 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 194
24161 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 562
24160 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems

Authors: Meng Miao, Jeongwoo Han, Cam Nguyen

Abstract:

Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.

Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems

Procedia PDF Downloads 239
24159 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 437
24158 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 139
24157 Image Steganography Using Least Significant Bit Technique

Authors: Preeti Kumari, Ridhi Kapoor

Abstract:

 In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.

Keywords: steganography, LSB, encoding, information hiding, color image

Procedia PDF Downloads 474
24156 Phytoremediation Alternative for Landfill Leachate Sludges Doña Juana Bogotá D.C. Colombia Treatment

Authors: Pinzón Uribe Luis Felipe, Chávez Porras Álvaro, Ruge Castellanos Liliana Constanza

Abstract:

According to global data, solid waste management of has low economic investment for its management in underdeveloped countries; being the main factor the advanced technologies acknowledge for proper operation and at the same time the technical development. Has been evidenced that communities have a distorted perception of the role and legalized final destinations for waste or "Landfill" places specific management; influenced primarily by their physical characteristics and the information that the media provide of these, as well as their wrong association with "open dumps". One of the major inconveniences in these landfills is the leachate sludge management from treatment plants; as this exhibit a composition highly contaminating (physical, chemical and biological) for the natural environment due to improper handling and disposal. This is the case Landfill Doña Juana (RSDJ), Bogotá, Colombia, considered among the largest in South America; where management problems have persisted for decades, since its creation being definitive on the concept that society has acquired about this form of waste disposal and improper leachate handling. Within this research process for treating phytoremediation alternatives were determined by using plants that are able to degrade heavy metals contained in these; allowing the resulting sludge to be used as a seal in the final landfill cover; within a restoration process, providing option to solve the landscape contamination problem, as well as in the communities perception and conflicts that generates landfill. For the project chemical assays were performed in sludge leachate that allowed the characterization of metals such as chromium (Cr), lead (Pb), arsenic (As) and mercury (Hg), in order to meet the amount in the biosolids regard to the provisions of the USEPA 40 CFR 503. The evaluations showed concentrations of 102.2 mg / kg of Cr, 0.49 mg / kg Pb, 0.390 mg / kg of As and 0.104 mg / kg of Hg; being lower than of the standards. A literature review on native plant species suitable for an alternative process of phytoremediation, these metals degradation capable was developed. Concluding that among them, Vetiveria zizanioides, Eichhornia crassipes and Limnobium laevigatum, for their hiperacumulativas in their leaves, stems and roots characteristics may allow these toxic elements reduction of in the environment, improving the outlook for disposal.

Keywords: health, filling slurry of leachate, heavy metals, phytoremediation

Procedia PDF Downloads 325
24155 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
24154 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 131
24153 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 82
24152 Repositioning Nigerian University Libraries for Effective Information Provision and Delivery in This Age of Globalization

Authors: S. O. Uwaifo

Abstract:

The paper examines the pivotal role of the library in university education through the provision of a wide range of information materials (print and non- print) required for the teaching, learning and research activities of the university. However certain impediments to the effectiveness of Nigerian university libraries, such as financial constraints, high foreign exchange, global disparities in accessing the internet, lack of local area networks, erratic electric power supply, absence of ICT literacy, poor maintenance culture, etc., were identified. Also, the necessity of repositioning Nigerian university libraries for effective information provision and delivery was stressed by pointing out their dividends, such as users’ access to Directory of Open Access Journals (DOAJ), Online Public Access Catalogue (OPAC), Institutional Repositories, Electronic Document Delivery, Social Media Networks, etc. It therefore becomes necessary for the libraries to be repositioned by way of being adequately automated or digitized for effective service delivery, in this age of globalization. Based on the identified barriers by this paper, some recommendations were proffered.

Keywords: repositioning, Nigerian university libraries, effective information provision and delivery, globalization

Procedia PDF Downloads 327
24151 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 63
24150 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation

Authors: Elaheh Vaezpour

Abstract:

Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.

Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption

Procedia PDF Downloads 335
24149 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 415
24148 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 337
24147 An Implementation of a Configurable UART-to-Ethernet Converter

Authors: Jungho Moon, Myunggon Yoon

Abstract:

This paper presents an implementation of a configurable UART-to-Ethernet converter using an ARM-based 32-bit microcontroller as well as a dedicated configuration program running on a PC for configuring the operating parameters of the converter. The program was written in Python. Various parameters pertaining to the operation of the converter can be modified by the configuration program through the Ethernet interface of the converter. The converter supports 3 representative asynchronous serial communication protocols, RS-232, RS-422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and UDP protocols were implemented on the microcontroller using an open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) and FreeRTOS, a free real-time operating system for embedded systems. Due to the use of a real-time operating system, the firmware of the converter was implemented as a multi-thread application and as a result becomes more modular and easier to develop. The converter can provide a seamless bridge between a serial port and an Ethernet port, thereby allowing existing legacy apparatuses with no Ethernet connectivity to communicate using the Ethernet protocol.

Keywords: converter, embedded systems, ethernet, lwIP, UART

Procedia PDF Downloads 706
24146 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 285
24145 Iterative Panel RC Extraction for Capacitive Touchscreen

Authors: Chae Hoon Park, Jong Kang Park, Jong Tae Kim

Abstract:

Electrical characteristics of capacitive touchscreen need to be accurately analyzed to result in better performance for multi-channel capacitance sensing. In this paper, we extracted the panel resistances and capacitances of the touchscreen by comparing measurement data and model data. By employing a lumped RC model for driver-to-receiver paths in touchscreen, we estimated resistance and capacitance values according to the physical lengths of channel paths which are proportional to the RC model. As a result, we obtained the model having 95.54% accuracy of the measurement data.

Keywords: electrical characteristics of capacitive touchscreen, iterative extraction, lumped RC model, physical lengths of channel paths

Procedia PDF Downloads 334