Search results for: lactic acid bacteria; multidrug-resistant pathogens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4862

Search results for: lactic acid bacteria; multidrug-resistant pathogens

1892 Repeated Reuse of Insulin Injection Syringes and Incidence of Bacterial Contamination among Diabetic Patients in Jimma University Specialized Hospital, Jimma, Ethiopia

Authors: Muluneh Ademe, Zeleke Mekonnen

Abstract:

Objective: to determine the level of bacterial contamination of reused insulin syringes among diabetic patients. Method: A facility based cross-sectional study was conducted among diabetic patients. Data on socio-demographic variables, history of injection syringe reuse, and frequency of reuse of syringes were collected using predesigned questionnaire. Finally, the samples from the syringes were cultured according to standard microbiological techniques. Result: Eighteen diabetic patients at Jimma University Hospital participated. A total of 83.3% of participants reused a single injection syringe for >30 consecutive injections, while 16.7% reused for >30 injections. Our results showed 22.2% of syringes were contaminated with methicillin-resistant Staphylococcus aures. Conclusion: We conclude reuse of syringe is associated with microbial contamination. The findings that 4/18 syringes being contaminated with bacteria is an alarming situation. A mechanism should be designed for patients to get injection syringes with affordable price. If reusing is not avoidable, reducing number of injections per a single syringe and avoiding needle touching with hand or other non-sterile material may be an alternative to reduce the risk of contamination.

Keywords: diabetes mellitus, Ethiopia, subcutaneous insulin injection, syringe reuse

Procedia PDF Downloads 381
1891 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 250
1890 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 357
1889 Determination of the Effectiveness of Some Methods Used in Greater Wax Moth (Galleria mellonella L.) in Honeycombs

Authors: Neslihan Ozsoy Taskiran, Miray Dayioglu, Belgin Gunbey, Banu Yucel, Cigdem Takma, Unal Karik, Tugce Olgun, Levent Aydin

Abstract:

A greater wax moth (Galleria mellonella L.), which is one of the most important pests after Varroa, plays a role in the transportation of many pathogens into the hive as well as damage to the honeycombs, and beekeepers suffer economically. Due to the risk that some of the methods against this pest may cause residue in bee products, and it can be harmful to the health of people who consume these products. Therefore, the most appropriate, most economical, and effective method should be applied in the moth control. For this purpose, in the first phase of the project (2017-2018), planned to be 2-stage in the Aegean Agricultural Research Institute in 2017-2020, the honeycombs, certified with good agricultural practice, were kept in a favorable condition for moths. Later, applications (Sulfur - B401 - Walnut (Leaf & Smoker) - lavender essential oil (1cc & 2cc & 3cc & 4cc) - laurel essential oil (1cc & 2cc & 3cc & 4cc) - control) were applied to the honeycombs with moths. In 2017, the B401 group had the highest wax moth damage area, and the group with the lowest wax moth damage area was determined as lavender 1cc; In 2018, the highest wax moth damage area was found in the walnut smoker group, while the lowest wax moth damage area was found in sulfur, walnut leaves, laurel 1cc - 2cc - 4cc, lavender 1cc - 2cc - 3cc - 4cc and control groups. In addition, sulfur residue amount (mean 128,18 mg/kg) in honeycomb was measured in the sulfur-treated group. Phase 1 of the project was completed, and the most important sub-groups among walnut (leaf) - lavender (1cc) and laurel (4cc) groups were identified. Accordingly, it is planned to carry out these treatments ((sulfur - B401 - walnut (leaf) - lavender (1cc) and laurel (4cc)) on honeycombs with do not contain moths, and later, it is planned to examine the effects of the treatment on the offspring area and honey yield by giving these honeycombs to the hives, in the 2nd stage of the project (2019-2020).

Keywords: honey bee, lavender essential oil, laurel essential oil, walnut, wax moth

Procedia PDF Downloads 166
1888 Integrated Process Modelling of a Thermophilic Biogas Plant

Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm

Procedia PDF Downloads 435
1887 Fabricating Anti-Counterfeiting Films by Grafting Cationic Dye on Cellulose Nanofiber

Authors: Mohammadreza Biabani, Mohammad Azadfallah

Abstract:

A facile and robust strategy is required to fabricate films with high special optical properties for application in the field of anti-counterfeit marking. Nanocellulose, derived from bioresources, is a renewable material with broad application prospects. In this paper, a method for grafting the eco-friendly Berberine cationic dye on cellulose nanofiber is proposed. A functional modification was carried out by in-situ polymerization along with a grafting approach with acrylic acid(AA) in order to develop cationic dyeability of the cellulose nanofiber (CNF). The Berberine grafting on nanocellulose was significantly influenced by the reaction time and temperature during the dyeing process. The dyed CNF-films exhibited appropriate characteristics like appearance, color strength, and fastness for anti-counterfeiting application.

Keywords: Cellulose nanofiber, Berberine, Grafting, anti-counterfeiting, film

Procedia PDF Downloads 132
1886 Preliminary Analysis on the Distribution of Elements in Cannabis

Authors: E. Zafeiraki, P. Nisianakis, K. Machera

Abstract:

Cannabis plant contains 113 cannabinoids and it is commonly known for its psychoactive substance tetrahydrocannabinol or as a source of narcotic substances. The recent years’ cannabis cultivation also increases due to its wide use both for medical and industrial purposes as well as for uses as para-pharmaceuticals, cosmetics and food commodities. Depending on the final product, different parts of the plant are utilized, with the leaves and bud (seeds) being the most frequently used. Cannabis can accumulate various contaminants, including heavy metals, both from the soil and the water in which the plant grows. More specifically, metals may occur naturally in the soil and water, or they can enter into the environment through fertilizers, pesticides and fungicides that are commonly applied to crops. The high probability of metals accumulation in cannabis, combined with the latter growing use, raise concerns about the potential health effects in humans and consequently lead to the need for the implementation of safety measures for cannabis products, such as guidelines for regulating contaminants, including metals, and especially the ones characterized by high toxicity in cannabis. Acknowledging the above, the aim of the current study was first to investigate metals contamination in cannabis samples collected from Greece, and secondly to examine potential differences in metals accumulation among the different parts of the plant. To our best knowledge, this is the first study presenting information on elements in cannabis cultivated in Greece, and also on the distribution pattern of the former in the plant body. To this end, the leaves and the seeds of all the samples were initially separated and dried and then digested with Nitric acid (HNO₃) and Hydrochloric acid (HCl). For the analysis of these samples, an Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) method was developed, able to quantify 28 elements. Internal standards were added at a constant rate and concentration to all calibration standards and unknown samples, while two certified reference materials were analyzed in every batch to ensure the accuracy of the measurements. The repeatability of the method and the background contamination were controlled by the analysis of quality control (QC) standards and blank samples in every sequence, respectively. According to the results, essential metals, such as Ca, Zn and Mg, were detected at high levels. On the contrary, the concentration of high toxicity metals, like As (average: 0.10ppm), Pb (average: 0.36ppm), Cd (average: 0.04ppm), and Hg (average: 0.012ppm) were very low in all the samples, indicating that no harmful effects on human health can be caused by the analyzed samples. Moreover, it appears that the pattern of contamination of metals is very similar in all the analyzed samples, which could be attributed to the same origin of the analyzed cannabis, i.e., the common soil composition, use of fertilizers, pesticides, etc. Finally, as far as the distribution pattern between the different parts of the plant is concerned, it was revealed that leaves present a higher concentration in comparison to seeds for all metals examined.

Keywords: cannabis, heavy metals, ICP-MS, leaves and seeds, elements

Procedia PDF Downloads 99
1885 Antibacterial and Cytotoxicity Activity of Cinchona Alkaloids

Authors: Alma Ramić, Mirjana Skočibušić, Renata Odžak, Tomica Hrenar, Ines Primožič

Abstract:

In an attempt to identify a new class of antimicrobial agents, the antimicrobial potential of Cinchona alkaloid derivatives was evaluated. The bark of the Cinchona trees is the source of a variety of alkaloids, among which the best known are quinine, quinidine, cinchonine and cinchonidine. They are very useful as organocatalysts in stereoselective synthesis. On the other hand, quinine is traditionally used in the treatment of malaria. Furthermore, Cinchona alkaloids possess various analgesic, anti-inflammatory and anti–arrhythmic properties as well. In this work we present the synthesis of twenty quaternary derivatives of pseudo−enantiomeric Cinchona alkaloid derivatives to evaluate their antibacterial activity. Quaternization of quinuclidine moiety was carried out with groups diverse in their size. The structures of compounds were systematically modified to obtain drug-like properties with proper physical and chemical properties and avoiding toxophore. All compounds were prepared in good yields and were characterized by standard analytical spectroscopy methods (1D and 2D NMR, IR, MS). The antibacterial activities of all compounds were evaluated against series of recent clinical isolates of antibiotic susceptible Gram-positive and resistant Gram-negative pathogens by determining their zone of inhibition and minimum inhibitory concentrations. All compounds showed good to strong broad-spectrum activity, equivalent or better in comparison with standard antibiotics used. Furthermore, seven compounds exhibited significant antibacterial efficiency against Gram-negative isolates. To visualize the results, principal component analysis was used as an additional classification tool. Cytotoxicity of compounds with different cell lines in human cell culture was determined. Based on these results, substituted quaternary Cinchona scaffold can be considered as promising new class of antimicrobials and further investigations should be performed. Supported by Croatian Science Foundation, Project No 3775 ADESIRE.

Keywords: antibacterial efficiency, cinchona alkaloids, cytotoxicity, pseudo‐enantiomers

Procedia PDF Downloads 153
1884 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 391
1883 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.

Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS

Procedia PDF Downloads 197
1882 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 323
1881 Innovations in the Lithium Chain Value

Authors: Fiúza A., Góis J. Leite M., Braga H., Lima A., Jorge P., Moutela P., Martins L., Futuro A.

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques are used to minimize the laboratory effort required by conventional approaches and also allow phenomenological comprehension.

Keywords: artificial intelligence, tailings free process, ferroelectric electrolyte battery, life cycle assessment

Procedia PDF Downloads 122
1880 Prevalence Of Periodontal Disease In Felines In The Outskirts Of The City Of Manaus, Brazil: An Epidemiological Study

Authors: Pármenas Costa Macedo do Nascimento

Abstract:

Periodontal disease is the most common disease in the oral cavity of felines. It starts with the accumulation of bacteria on the tooth surface supporting the tissues of the periodontal tissue, namely gums, alveolar bone, cementum, and periodontal ligament. The main clinical symptom observed by the owner is bad breath, which may lead to local and systemic consequences depending on the stage of periodontal disease, such as bleeding and bone loss. Therefore, the study is important to educate tutors to take better care of the felines oral health in order to try to prevent the disease. For this epidemiological study, the target population has been felines, located on the outskirts of Manaus, in the state of Amazonas, with a geographic area of 155.68 km², with no defined breed, from October 1st to 10th, 2021, whose samples has been randomly selected, with a detailed profile. The variables of interest for this study have been: absence or presence of periodontal disease, gender, age (delimited by age group), and condition (domiciled or homeless). Using a sample of 40 felines from 4 districts of the east side of Manaus chosen at random, an oral exam has been made to identify the studied disease. The animal's apparent age, condition, sex, and presence or absence of periodontal disease has been noted. It has been observed that 70% (28/40) of them had periodontal disease, mostly females, aged between 0 and 5 years and domiciled, totaling 30% (12/40).

Keywords: felines, oral cavity, oral exam, periodontal disease

Procedia PDF Downloads 214
1879 Chemical Composition and Antibacterial Activity of Ceratonia siliqua L. Growing in Boumerdes, Algeria

Authors: N. Meziou-Chebouti, A. Merabet, Y. Chebouti N. Behidj

Abstract:

This work is a contribution to the knowledge of physicochemical characteristics of mature carob followed by evaluation of the activity, antimicrobial phenolics leaves and green pods of Ceratonia siliqua L. physicochemical study shows that mature carob it has a considerable content of sugar (50.90%), but poor in proteins (7%), fat (8%) and also has a high mineral content. The results obtained from phenolic extracts of leaves and green pods of Ceratonia siliqua L. show a wealth leaf phenolic extract especially flavonoids (0,545 mg EqQ/g) relative to the extract of green pods (0,226 mgEqQ/g). Polyphenols leaves have a slightly inhibitory effect on the growth of strains: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoiae, Streptococcus sp and Sanmonella enteritidis, a strong inhibitory effect on the growth of Pseudomonas strain aerogenosa. Moreover, polyphenols pod have a slightly inhibitory effect on the growth of Streptococcus sp strains, Pseudomonas and aerogenosa Sanmonella enteritidis, a slightly inhibitory effect on the growth of Klebsiella pneumoniae strains, E. coli and Staphylococcus aureus.

Keywords: antimicrobial activity, bacteria, clove, Ceratonia siliqua, polyphenols

Procedia PDF Downloads 354
1878 Digital Antimicrobial Thermometer for Axilliary Usage: A New Device for Measuring the Temperature of the Body for the Reduction of Cross-Infections

Authors: P. Efstathiou, E. Kouskouni, Z. Manolidou, K. Karageorgou, M. Tseroni, A. Efstathiou, V. Karyoti, I. Agrafa

Abstract:

Aim: The aim of this prospective comparative study is to evaluate the reduction of microbial flora on the surface of an axillary digital thermometer, made of antimicrobial copper, in relation with a common digital thermometer. Material – Methods: A brand new digital electronic thermometer implemented with antimicrobial copper (Cu 70% - Nic 30%, low lead) on the two edges of the device (top and bottom: World Patent Number WO2013064847 and Register Number by the Hellenic Copper Development Institute No 11/2012) was manufactured and a comparative study with common digital electronic thermometer was conducted on 18 ICU (Intensive Care Unit) patients of three different hospitals. The thermometry was performed in accordance with the projected International Nursing Protocols for body temperature measurement. A total of 216 microbiological samples were taken from the axillary area of the patients, using both of the investigated body temperature devises. Simultaneously the “Halo” phenomenon (phenomenon “Stefanis”) was studied at the non-antimicrobial copper-implemented parts of the antimicrobial digital electronic thermometer. Results: In all samples collected from the surface of the antimicrobial electronic digital thermometer, the reduction of microbial flora (Klebsiella spp, Staphylococcus aureus, Staphylococcus epidermitis, Candida spp, Pneudomonas spp) was progressively reduced to 99% in two hours after the thermometry. The above flora was found in the axillary cavity remained the same in common thermometer. The statistical analysis (SPSS 21) showed a statistically significant reduction of the microbial load (N = 216, < 0.05). Conclusions: The hospital-acquired infections are linked to the transfer of pathogens due to the multi-usage of medical devices from both health professionals and patients, such as axillary thermometers. The use of antimicrobial digital electronic thermometer minimizes microbes' transportation between patients and health professionals while having all the conditions of reliability, proper functioning, security, ease of use and reduced cost.

Keywords: antimicrobial copper, cross infections, digital thermometers, ICU

Procedia PDF Downloads 403
1877 Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution

Authors: Majid Farsadrouh Rashti, Alireza Mohammadinejad, Amir Shafiee Kisomi

Abstract:

Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals.

Keywords: adsorption, hydrogel, nanocomposite, super adsorbent

Procedia PDF Downloads 187
1876 Effect of Synthesis Method on Structural, Morphological Properties of Zr0.8Y0.2-xLax Oxides (x=0, 0.1, 0.2)

Authors: Abdelaziz Ghrib, Samir Hattali, Mouloud Ghrib, Mohamed Lamine Aouissia, David Ruch

Abstract:

In the present study, the solid solutions with a chemical composition of Zr0.8Y0.2-xLaxO2 (x=0, 0.1, 0.2) were synthesized via two routes, by hydrothermal method using NaOH as precipitating agent at 230°C for 15h and by the sol–gel process using citric acid as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) techniques for appropriate characterization of the distinct thermal events occurring during synthesis. All the compounds crystallize in cubic fluorite structure, as indicated by X-ray diffraction studie. The microstructure of oxides synthesized by sol-gel showed porosity that increased with the lanthanum La3+ contents compared to hydrothermal method which gives a single crystal oxide.

Keywords: oxide, hydrothermal, rare earth, solubility, sol-gel, ternary mixture

Procedia PDF Downloads 642
1875 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: humic acid, azadirachtin, vermicompost, insect-pest

Procedia PDF Downloads 277
1874 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 303
1873 Preparation of Zno/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application

Authors: Babak Sadeghi, Parisa Ghayomipour

Abstract:

ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of S. aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 ºC. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.

Keywords: nanocomposites, antibacterial activity, scanning electron microscopy (SEM), x-ray diffraction (XRD)

Procedia PDF Downloads 473
1872 The Appropriateness of Antibiotic Prescribing within Dundee Dental Hospital

Authors: Salma Ainine, Colin Ritchie, Tracey McFee

Abstract:

Background: The societal impact of antibiotic resistance is a major public health concern. The increase in the incidence of resistant bacteria can ultimately be fatal. Objective: To analyse the appropriateness of antibiotic prescribing in Dundee Dental Hospital, ultimately improving the safety and quality of patient care. Methods: Two examiners independently cross-checked approximately fifty consecutive prescriptions, and corresponding patient case notes, for three data collection cycles between August 2014–September 2015. The Scottish Dental Clinical Effectiveness Program (SDCEP) Drug Prescribing for Dentistry guidelines was the standard utilised. The criteria: clinical justification, regime justification, and review arrangements was measured, and compared to the standard. Results: Cycle one revealed 42% of antibiotic prescriptions were appropriate. Interventions included: multiple staff meetings, an introduction of a checklist attached to the prescription pack, and production of patient leaflets explaining indications for antibiotics. Cycle two and three revealed 44%, and 30% compliance, respectively. Conclusion: The results of the audit have yet to meet target standards set out in prescribing guidelines. However, steps are being taken and change has occurred on a cultural level.

Keywords: antibiotic resistance, antibiotic stewardship, dental infection, hygiene standards

Procedia PDF Downloads 225
1871 Separation of Some Pyrethroid Insecticides by High-Performance Liquid Chromatography

Authors: Fairouz Tazerouti, Samira Ihadadene

Abstract:

Pyrethroids are synthetic pesticides that originated from the modification of natural pyrethrins to improve their biological activity and stability. They are a family of chiral pesticides with a large number of stereoisomers. Enantiomers of synthetic pyretroids present different insecticidal activity, toxicity against aquatic invertebrates and persistence in the environment so the development of rapid and sensitive chiral methods for the determination of different enantiomers is necessary. In this study, the separation of enantiomers of pyrethroid insecticides has been systematically studied using three commercially chiral high-performance liquid chromatography columns. Useful resolution was obtained for compounds with a variety of acid and alcohol moieties, and containing one to four chiral centres. The chromatographic behaviour of the diastereomers of some of these insecticides by using normal, polar and reversed mobile phase mode were also examined.

Keywords: pesticides, analysis, liquid chromatography, pyrethroids

Procedia PDF Downloads 377
1870 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach

Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha

Abstract:

Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.

Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy

Procedia PDF Downloads 110
1869 Air Pollution from Volatile Metals and Acid Gases

Authors: F. Ait Ahsene-Aissat, Y. Kerchiche, Y. Moussaoui, M. Hachemi

Abstract:

Environmental pollution is at the heart of the debate today, the pollutants released into the atmosphere must be measured and reduced to the norms of international releases. The industries pollution is caused by emissions of SO₂, CO and heavy metals in volatile form that must be quantified and monitored. This study presents a qualitative and quantitative analysis However, the collection of volatile heavy metals were performed by active sampling using an isokinetic. SO₂ gas for the maximum is reached for a value of 343 mg / m³, the SO₂ concentration far exceeds the standard releases SO₂ followed by incineration industries in Algeria. the concentration of Cr exceeds 8 times the standard, the Pb concentration in the excess of 6 times, the concentration of Fe has reached very high values exceeding the standard 30 times, the Zn concentration in the excess of 5 times, and the Ni the excess of 4 times and finally that of Cu is almost double of the standard.

Keywords: SO₂, CO, volatiles metals, active sampling isokinetic

Procedia PDF Downloads 297
1868 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 307
1867 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses

Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva

Abstract:

The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.

Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability

Procedia PDF Downloads 288
1866 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 159
1865 Wet Chemical Synthesis for Fe-Ni Alloy Nanocrystalline Powder

Authors: Neera Singh, Devendra Kumar, Om Parkash

Abstract:

We have synthesized nanocrystalline Fe-Ni alloy powders where Ni varies as 10, 30 and 50 mole% by a wet chemical route (sol-gel auto-combustion) followed by reduction in hydrogen atmosphere. The ratio of citrate to nitrate was maintained at 0.3 where citric acid has worked as a fuel during combustion. The reduction of combusted powders was done at 700°C/1h in hydrogen atmosphere using an atmosphere controlled quartz tube furnace. Phase and microstructure analysis has shown the formation of α-(Fe,Ni) and γ-(Fe,Ni) phases after reduction. An increase in Ni concentration resulted in more γ-(Fe,Ni) formation where complete γ-(Fe,Ni) formation was achieved at 50 mole% Ni concentration. Formation of particles below 50 nm size range was confirmed using Scherrer’s formula and Transmission Electron Microscope. The work is aimed at the effect of Ni concentration on phase, microstructure and magnetic properties of synthesized alloy powders.

Keywords: combustion, microstructure, nanocrystalline, reduction

Procedia PDF Downloads 181
1864 Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites

Authors: Varun Mittal, Shishir Sinha

Abstract:

The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites.

Keywords: bagasse fiber, composite, hardness, sodium hydroxide

Procedia PDF Downloads 286
1863 Eco-Friendly Natural Filler Based Epoxy Composites

Authors: Suheyla Kocaman, Gulnare Ahmetli

Abstract:

In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.

Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers

Procedia PDF Downloads 241