Search results for: healthcare data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27821

Search results for: healthcare data security

24851 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 560
24850 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 72
24849 Mobile Marketing Adoption in Pakistan

Authors: Manzoor Ahmad

Abstract:

The rapid advancement of mobile technology has transformed the way businesses engage with consumers, making mobile marketing a crucial strategy for organizations worldwide. This paper presents a comprehensive study on the adoption of mobile marketing in Pakistan, aiming to provide valuable insights into the current landscape, challenges, and opportunities in this emerging market. To achieve this objective, a mixed-methods approach was employed, combining quantitative surveys and qualitative interviews with industry experts, marketers, and consumers. The study encompassed a diverse range of sectors, including retail, telecommunications, banking, and e-commerce, ensuring a comprehensive understanding of mobile marketing practices across different industries. The findings indicate that mobile marketing has gained significant traction in Pakistan, with a growing number of organizations recognizing its potential for reaching and engaging with consumers effectively. Factors such as increasing smartphone penetration, affordable data plans, and the rise of social media usage have contributed to the widespread adoption of mobile marketing strategies. However, several challenges and barriers to mobile marketing adoption were identified. These include issues related to data privacy and security, limited digital literacy among consumers, inadequate infrastructure, and cultural considerations. Additionally, the study highlights the need for tailored and localized mobile marketing strategies to address the diverse cultural and linguistic landscape of Pakistan. Based on the insights gained from the study, practical recommendations are provided to support organizations in optimizing their mobile marketing efforts in Pakistan. These recommendations encompass areas such as consumer targeting, content localization, mobile app development, personalized messaging, and measurement of mobile marketing effectiveness. This research contributes to the existing literature on mobile marketing adoption in developing countries and specifically sheds light on the unique dynamics of the Pakistani market. It serves as a valuable resource for marketers, practitioners, and policymakers seeking to leverage mobile marketing strategies in Pakistan, ultimately fostering the growth and success of businesses operating in this region.

Keywords: mobile marketing, digital marketing, mobile advertising, adoption of mobile marketing

Procedia PDF Downloads 116
24848 Telemedicine for Telerehabilitation in Areas Affected by Social Conflicts in Colombia

Authors: Lilia Edit Aparicio Pico, Paulo Cesar Coronado Sánchez, Roberto Ferro Escobar

Abstract:

This paper presents the implementation of telemedicine services for physiotherapy, occupational therapy, and speech therapy rehabilitation, utilizing telebroadcasting of audiovisual content to enhance comprehensive patient recovery in rural areas of San Vicente del Caguán municipality, characterized by high levels of social conflict in Colombia. The region faces challenges such as dysfunctional problems, physical rehabilitation needs, and a high prevalence of hearing diseases, leading to neglect and substandard health services. Limited access to healthcare due to communication barriers and transportation difficulties exacerbates these issues. To address these challenges, a research initiative was undertaken to leverage information and communication technologies (ICTs) to improve healthcare quality and accessibility for this vulnerable population. The primary objective was to develop a tele-rehabilitation system to provide asynchronous online therapies and teleconsultation services for patient follow-up during the recovery process. The project comprises two components: Communication systems and human development. A technological component involving the establishment of a wireless network connecting rural centers and the development of a mobile application for video-based therapy delivery. Communications systems will be provided by a radio link that utilizes internet provided by the Colombian government, located in the municipality of San Vicente del Caguán to connect two rural centers (Pozos and Tres Esquinas) and a mobile application for managing videos for asynchronous broadcasting in sidewalks and patients' homes. This component constitutes an operational model integrating information and telecommunications technologies. The second component involves pedagogical and human development. The primary focus is on the patient, where performance indicators and the efficiency of therapy support were evaluated for the assessment and monitoring of telerehabilitation results in physical, occupational, and speech therapy. They wanted to implement a wireless network to ensure audiovisual content transmission for tele-rehabilitation, design audiovisual content for tele-rehabilitation based on services provided by the ESE Hospital San Rafael in physiotherapy, occupational therapy, and speech therapy, develop a software application for fixed and mobile devices enabling access to tele-rehabilitation audiovisual content for healthcare personnel and patients and finally to evaluate the technological solution's contribution to the ESE Hospital San Rafael community. The research comprised four phases: wireless network implementation, audiovisual content design, software application development, and evaluation of the technological solution's impact. Key findings include the successful implementation of virtual teletherapy, both synchronously and asynchronously, and the assessment of technological performance indicators, patient evolution, timeliness, acceptance, and service quality of tele-rehabilitation therapies. The study demonstrated improved service coverage, increased care supply, enhanced access to timely therapies for patients, and positive acceptance of teletherapy modalities. Additionally, the project generated new knowledge for potential replication in other regions and proposed strategies for short- and medium-term improvement of service quality and care indicators

Keywords: e-health, medical informatics, telemedicine, telerehabilitation, virtual therapy

Procedia PDF Downloads 67
24847 A Causal Model for Environmental Design of Residential Community for Elderly Well-Being in Thailand

Authors: Porntip Ruengtam

Abstract:

This article is an extension of previous research presenting the relevant factors related to environmental perceptions, residential community, and the design of a healing environment, which have effects on the well-being and requirements of Thai elderly. Research methodology began with observations and interviews in three case studies in terms of the management processes and environment design of similar existing projects in Thailand. The interview results were taken to summarize with related theories and literature. A questionnaire survey was designed for data collection to confirm the factors of requirements in a residential community intended for the Thai elderly. A structural equation model (SEM) was formulated to explain the cause-effect factors for the requirements of a residential community for Thai elderly. The research revealed that the requirements of a residential community for Thai elderly were classified into three groups when utilizing a technique for exploratory factor analysis. The factors were comprised of (1) requirements for general facilities and activities, (2) requirements for facilities related to health and security, and (3) requirements for facilities related to physical exercise in the residential community. The results from the SEM showed the background of elderly people had a direct effect on their requirements for a residential community from various aspects. The results should lead to the formulation of policies for design and management of residential communities for the elderly in order to enhance quality of life as well as both the physical and mental health of the Thai elderly.

Keywords: elderly, environmental design, residential community, structural equation modeling

Procedia PDF Downloads 318
24846 A Multi-Site Knowledge Attitude and Practice Survey of Ebola Virus Disease (EVD) in Nigeria

Authors: Ilyasu G., Ogoina D., Otu AA, Muhammed FD, Ebenso B., Otokpa D., Rotifa S., Tuduo-Wisdom O., Habib AG

Abstract:

Background: The 2014 Ebola Virus Disease (EVD) outbreak was characterized by fear, misconceptions and irrational behaviors. We conducted a knowledge attitude and practice survey of EVD in Nigeria to inform the institution of effective control measures. Methods: Between July 30th and September 30th 2014, a cross-sectional study on knowledge, attitude and practice (KAP) of Ebola Virus Disease (EVD) was undertaken among adults of the general population and healthcare workers (HCW) in three states of Nigeria, including Kano, Cross River and Bayelsa states. Demographic information and data on KAP were obtained using a self-administered standardized questionnaire. The percentage KAP scores were categorized as good and poor. Independent predictors of good knowledge of EVD were ascertained using a binary logistic regression model. Results: Out of 1035 study participants with a median age of 32 years, 648 (62.6%) were males, 846 (81.7%) had tertiary education and 441 (42.6%) were HCW. There were 218, 239 and 578 respondents from Bayelsa, Cross Rivers, and Kano states, respectively. The overall median percentage KAP scores and interquartile ranges (IQR) were 79.46% (15.07%), 95.0% (33.33%), and 49.95% (37.50%), respectively. Out of the 1035 respondents, 470 (45.4%), 544(52.56%), and 252 (24.35%) had good KAP of EVD defined using 80%, 90%, and 70% score cut-offs, respectively. Independent predictors of good knowledge of EVD were a HCW (Odds Ratio-OR-2.89, 95% Confidence interval-CI of 1.41-5.90), reporting ‘moderate to high fear of EVD’ (OR-2.15, 95% CI-1.47-3.13) and ‘willingness to modify habit’ (OR-1.68, 95% CI-1.23-2.30). Conclusion: Our results reveal suboptimal EVD-related knowledge, attitude and practice among adults in Nigeria. To effectively control future outbreaks of EVD in Nigeria, there is a need to institute public sensitization programs that improve understanding of EVD and address EVD-related myths and misconceptions, especially among the general population.

Keywords: Ebola, health care worker, knowledge, attitude

Procedia PDF Downloads 288
24845 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 400
24844 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 591
24843 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 19
24842 A Compact Ultra-Wide Band Antenna with C-Shaped Slot for WLAN Notching

Authors: Maryam Rasool, Farhan Munir, Fahad Nawaz, Saad Ahmad

Abstract:

A patch antenna operating in the Ultra-Wide Band of frequency (3.1 GHz – 10.6 GHz) is designed with enhanced security from interference from other applications by incorporating the notching technique. Patch antennas in the Ultra-Wide Band are becoming widely famous due to their low power, light weight and high data rate capability. Micro strip patch antenna’s patch can be altered to increase its bandwidth and introduce UWB character in it. The designed antenna is a patch antenna consisting of a conductive sheet of metal mounted over a large sheet of metal called the ground plane with a substrate separating the two. Notched bands are public safety WLAN, WLAN and FSS. Different techniques used to implement the UWB antenna were individually implemented and there results were examined. V shaped patch was then chosen and modified to an arrow shaped patch to give the optimized results operating on the entire UWB region with considerable return loss. The frequency notch prevents the operation of the antenna at a particular range of frequency, hence minimizing interference from other systems. There are countless techniques for introducing the notch but we have used inverted C-shaped slots in the UWB patch to get the notch characteristics as output and also wavelength resonators to introduce notch in UWB band. The designed antenna is simulated in High Frequency Structural Simulator (HFSS) 13.0 by Ansoft.

Keywords: HFSS, Notch, UWB, WLAN

Procedia PDF Downloads 418
24841 A Comparative Study of the Use of Medicinal Plants and Conventional Medicine for the Treatment of Hepatitis B Virus in Ibadan Metropolis

Authors: Julius Adebayo John

Abstract:

The objective of this study is to compare the use of medicinal plants and Conventional medicine intervention in the management of HBV among Ibadan populace. A purposive sampling technique was used to administer questionnaires at 2 places, namely, the University College Hospital and Total Healthcare Diagnostic Centre, Ibadan, where viral loads are carried out. A EuroQol (EQ – 5D) was adopted to collect data. Descriptive and inferential analyses were performed. Also, ANOVA, Correlation, charts, and tables were used. Findings revealed a high prevalence of HBV among female respondents and sample between ages 26years to 50years. Results showed that the majority discovered their health status through free HBV tests. Analysis indicated that the use of medicinal plant extract is cost-effective in 73% of cases. Rank order utility derived from medicinal plants is higher than other interventions. Correlation analysis performed for the current health status of respondents were significant at P<0.01 against the intervention management adopted (0.046), cost of treatment (0.549), utility (0.407) at P<0.00, duration of the treatment (0.604) at P<0.01; viral load before treatment (-0.142) not significant at P<0.01, the R2 (72.2%) showed the statistical variance in respondents current health status as explained by the independent variables. Respondents gained quality-adjusted life-years (QALYs) of between 1year to 3years. Suggestions were made for a public-private partnership effort against HBV with emphasis on periodic screening, viral load test subsidy, and free vaccination of people with –HBV status. Promoting phytomedicine through intensive research with strong regulation of herbal practitioners will go a long way in alleviating the burdens of the disease in society.

Keywords: medicinal plant, HBV management interventions, utility, QALYs, ibadan metropolis

Procedia PDF Downloads 158
24840 Drivers and Barriers to the Acceptability of a Human Milk Bank Among Malaysians: A Cross Sectional Study

Authors: Kalaashini Ramachandran, Maznah Dahlui, Nik Daliana Nik Farid

Abstract:

WHO recommends all babies to be exclusively breastfed and donor milk is the next best alternative in the absence of mother’s own milk. The establishment of a human milk bank (HMB) is still being debated due to religious concerns in Malaysia leading to informal milk sharing practices, but little is known on the knowledge, attitude and perception of women towards HMB and its benefits. This study hypothesizes that there is no association between knowledge and attitude and the acceptance towards the establishment of human milk bank among Malaysian women and healthcare providers. The aim of this study is to determine the drivers and barriers among Malaysian towards the acceptance of an HMB. A cross-sectional study with 367 participants was enrolled within a period of 3 months to answer an online self-administered questionnaire. Data on sociodemographic, knowledge on breastfeeding benefits, knowledge and attitude on HMB and its specific issues were analyzed in terms of frequency and then proceed to multiple logistic regression. Majority of the respondents are of Islamis religion (73.3%), have succeesfully completed their tertiary education (82.8%), and are employed (70.8%). Only 55.9% of respondents have heard of an HMB stating internet as their main source of information but a higher prevalence is agreeable to the establishment of a human milk bank (67.8%). Most respondents have a good score on knowledge of breastfeeding benefits and on HMB specific issues (70% and 54.2% respectively) while 63.8% of them have a positive attitude towards HMB. In the multivariate analysis, mothers with a good score on general knowledge of breastfeeding (AOR: 1.715) were more likely to accept the establishment of an HMB while Islamic religion was negatively associated with its establishment (AOR:0.113). This study has found a high prevalence rate of mothers who are willing to accept the establishment of an HMB. This action can be potentially shaped by educating mothers on the benefits of breastfeeding as well as addressing their religious concerns so the establishment of a religiously abiding HMB in Malaysia may be accepted without compromising their belief or the health benefit of donor milk.

Keywords: acceptability, attitude, human milk bank, knowledge

Procedia PDF Downloads 107
24839 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 134
24838 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 280
24837 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 243
24836 A Pilot Study Assessing the Effectiveness of a Virtual Reality Intervention for Alleviating Pain and Anxiety in the Pediatric Emergency Room

Authors: Muqadis Shazia Rajpar, Lawrence Mitelberg, Rubaiat S. Ahmed, Jemer Garrido, Rukhsana Hossain, Sergey M. Motov

Abstract:

Distraction techniques have been used as a means to reduce pain, anxiety, and stress in various healthcare settings to facilitate care and make visits less unpleasant. Using virtual reality (VR) in the pediatric emergency setting can be a valuable, effective, and safe non-pharmacological alternative to the current standard of care for pain and anxiety management in pediatric patients. Our pilot study aimed to evaluate the effectiveness of a VR-based intervention as an alternative distraction modality to alleviate pain and anxiety associated with pediatric emergency department (ED) visits and acute pain conditions. The pilot study period was from November 16 to December 9, 2022, for pediatric ED visits for pain, anxiety, or both. Patients were selected based on a novel VR protocol to receive the VR intervention with the administration of pre and post-intervention surveys concerning pain/anxiety ratings and pain scores (Wong-Baker FACES/NRS). Descriptive statistics, paired t-test, and a Fisher Exact Test were used for data analysis, assuming a p-value of 0.05 for significance. A total of 33 patients (21 females, 12 males), ages 5-20 (M = 10.5, SD = 3.43) participated in this study – 12 patients had pain, 2 patients had anxiety, and 19 patients had both pain and anxiety. There was a statistically significant decrease in post-intervention pain scores of less than one point on the rating scale (6.48 vs. 5.62, p < .001). There was a statistically significant reduction in the percentage of patients suffering from “considerable” or “great” pain after the VR intervention (51.6% to 42.3%, p < .001). Similarly, we noticed an increase in the number of patients with “slight” or “moderate” pain post–VR intervention (48.4% to 57.7%, p < .001). Lastly, we demonstrated a decrease in anxiety among patients after utilizing VR (63.6% vs. 36.4%, p < .001). To conclude, VR can alleviate pain and anxiety in pediatric patients and be a useful non-pharmacological tool in the emergency setting.

Keywords: anxiety, emergency room, pain management, pediatric emergency medicine, virtual reality

Procedia PDF Downloads 91
24835 Impact of Aquaculture on Sustainable Development in Nigeria

Authors: Titilayo Shodeinde, Bukola Dawodu

Abstract:

Aquaculture practice in Nigeria is an industry that includes fish development in a controlled situation. It has developed through various stages and stages with its latent capacity yet to be completely tapped. To avow this potential in adding to human advancement, nourishment security and improved way of life, the aquaculture business requires new approaches. Subsequently, this seminar paper reviews the impact of aquaculture on sustainable development in Nigeria. The examination received on subjective research strategy. The segments and the frameworks of business fish cultivating were completely talked about. Additionally, imperatives to business fish cultivating in the area were explained. The systems for advancing business aquaculture, for example, increment in consciousness of aquaculture items, financing of aquaculture data sources, preparing and labor improvement, government support, arrangement of fish ranchers agreeable social orders, access to advances and credit offices, advancement of research exercises, viable fisheries approaches, great institutional structure, and decreasing the degrees of defilement and instability in the district, were plainly brought up as a veritable devices, for changing the current situation with aquaculture in Niger Delta, through arranged, engaged and composed compelling administration procedures, by singular ranchers, government organizations and applicable foundations for economical advancement of the locale specifically and the nation by and large.

Keywords: aquaculture, sustainability, Nigeria, research

Procedia PDF Downloads 223
24834 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 90
24833 Obstruction to Treatments Meeting International Standards for Lyme and Relapsing Fever Borreliosis Patients

Authors: J. Luché-Thayer, C. Perronne, C. Meseko

Abstract:

We reviewed how certain institutional policies and practices, as well as questionable research, are creating obstacles to care and informed consent for Lyme and relapsing fever Borreliosis patients. The interference is denying access to treatments that meet the internationally accepted standards as set by the Institute of Medicine. This obstruction to care contributes to significant human suffering, disability and negative economic effect across many nations and in many regions of the world. We note how evidence based medicine emphasizes the importance of clinical experience and patient-centered care and how these patients benefit significantly when their rights to choose among treatment options are upheld.  

Keywords: conflicts of interest, obstacles to healthcare accessibility, patient-centered care, the right to informed consent

Procedia PDF Downloads 210
24832 Empowering Girls and Youth in Bangladesh: Importance of Creating Safe Digital Space for Online Learning and Education

Authors: Md. Rasel Mia, Ashik Billah

Abstract:

The empowerment of girls and youth in Bangladesh is a demanding issue in today's digital age, where online learning and education have become integral to personal and societal development. This abstract explores the critical importance of creating a secure online environment for girls and youth in Bangladesh, emphasizing the transformative impact it can have on their access to education and knowledge. Bangladesh, like many developing nations, faces gender inequalities in education and access to digital resources. The creation of a safe digital space not only mitigates the gender digital divide but also fosters an environment where girls and youth can thrive academically and professionally. This manuscript draws attention to the efforts through a mixed-method study to assess the current digital landscape in Bangladesh, revealing disparities in phone and internet access, online practices, and awareness of cyber security among diverse demographic groups. Moreover, the study unveils the varying levels of familial support and barriers encountered by girls and youth in their quest for digital literacy. It emphasizes the need for tailored training programs that address specific learning needs while also advocating for enhanced internet accessibility, safe online practices, and inclusive online platforms. The manuscript culminates in a call for collaborative efforts among stakeholders, including NGOs, government agencies, and telecommunications companies, to implement targeted interventions that bridge the gender digital divide and pave the way for a brighter, more equitable future for girls and youth in Bangladesh. In conclusion, this research highlights the undeniable significance of creating a safe digital space as a catalyst for the empowerment of girls and youth in Bangladesh, ensuring that they not only access but excel in the online space, thereby contributing to their personal growth and the advancement of society as a whole.

Keywords: collaboration, cyber security, digital literacy, digital resources, inclusiveness

Procedia PDF Downloads 64
24831 Sustainable Thermal Energy Storage Technologies: Enhancing Post-Harvest Drying Efficiency in Sub-Saharan Agriculture

Authors: Luís Miguel Estevão Cristóvão, Constâncio Augusto Machanguana, Fernando Chichango, Salvador Grande

Abstract:

Sub-Saharan African nations depend greatly on agriculture, a sector mainly marked by low production. Most of the farmers live in rural areas and employ basic labor-intensive technologies that lead to time inefficiencies and low overall effectiveness. Even with attempts to enhance farmers’ welfare through improved seeds and fertilizers, meaningful outcomes are yet to be achieved due to huge amounts of post-harvest losses. Such losses significantly endanger food security, economic stability, and result in unsustainable agricultural practices because more land, water, labor, energy, fertilizer, and other inputs must be used to produce more food. Drying, as a critical post-harvest process involving simultaneous heat and mass transfer, deserves attention. Among alternative green-energy sources, solar energy-based drying garners attention, particularly for small-scale farmers in remote communities. However, the intermittent nature of solar radiation poses challenges. To address this, energy storage solutions like rock-based thermal energy storage offer cost-effective solutions tailored to the needs of farmers. Methodologically, three solar dryers were constructed of metal, wood, and clay brick. Several tests were carried out with and without energy storage material. Notably, it has been demonstrated that soapstone stands out as a promising material due to its affordability and high specific energy capacity. By implementing these greener technologies, Sub-Saharan African countries could mitigate post-harvest losses, enhance food availability, improve nutrition, and promote sustainable resource utilization.

Keywords: energy storage, food security, post-harvest, solar dryer

Procedia PDF Downloads 32
24830 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 176
24829 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand

Authors: Patcharaporn Sakulpong, Wiriya Phokhwang

Abstract:

Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliative

Keywords: community-based palliative care, model, participatory action research, patients with cancer

Procedia PDF Downloads 271
24828 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 187
24827 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 80
24826 Developing a Culturally Adapted Family Intervention for Relatives Living with Schizophrenia in Oman

Authors: Aziza Al-Sawafi

Abstract:

Introduction: The evidence of family interventions in schizophrenia is robust primarily in high-income settings. However, they have been adapted to other settings and cultures to improve effectiveness and acceptability. In Oman, there is limited integration of psychosocial interventions in the treatment of schizophrenia. Therefore, the adaptation of family intervention to the Omani culture may facilitate its uptake. Most service users in Oman live with their families outside the healthcare system, and nothing is known about their experience, needs, or resources. Furthermore, understanding caregivers' and mental health professionals' preferences, perceptions, and experience is a fundamental element in the process of intervention development. Therefore, this study aims to develop a culturally sensitive, feasible, and acceptable family intervention for relatives living with schizophrenia in Oman. Method: The Medical Research Council's framework for the evaluation of complex health care interventions provided the conceptual structure for the study. The development phase was carried out, which involved three stages: 1) systematically reviewing the available literature regarding culturally adapted family interventions in the Arab world 2) In-depth interviews with caregivers to explore their experience and perceived needs and preferences regarding intervention 3) A focus group study involving health professionals to explore the acceptability and feasibility of delivering the family intervention in the Omani context. Data synthesis determined the design of the proposed intervention according to the findings obtained from the previous stages. Results: Stage one: The systematic review found limited evidence of culturally-adapted family interventions in the Arab region. However, the cultural adaptation process was comprehensive, and the implementation was reported to be feasible and acceptable. Stage two: The experience of family caregivers illuminated four main themes: burden, stigma, violence, and family needs. Burdens of care included objective and subjective burdens, positive feelings, and coping mechanisms. Caregivers gave their opinion about the content and preference of the intervention from their personal experiences. Stage three: mental health professionals discussed the delivery system of the intervention from a clinical standpoint concerning issues and barriers to implementation. They recommended modifications to the components of the intervention to ensure its acceptability and feasibility in the local setting. Data synthesis was carried out, and the intervention was designed. Conclusion: This study provides evidence of the potential applicability and acceptability of a culturally sensitive family intervention for families of individuals with schizophrenia in Oman. However, more work needs to be done to test the feasibility of the study and overcome the practical challenges.

Keywords: cultural-adaptation, family intervention, Oman, schizophrenia

Procedia PDF Downloads 150
24825 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 483
24824 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 540
24823 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 248
24822 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 410