Search results for: estimation algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3842

Search results for: estimation algorithms

872 Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin

Authors: Kechnit Djamel, Ammarri Abdelhadi, Raphael Tshimang, Mark Trrig

Abstract:

One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM.

Keywords: discharge monitoring, navigation, MODIS, empiric, ADCP, Congo River

Procedia PDF Downloads 92
871 Comparative Study of Flood Plain Protection Zone Determination Methodologies in Colombia, Spain and Canada

Authors: P. Chang, C. Lopez, C. Burbano

Abstract:

Flood protection zones are riparian buffers that are formed to manage and mitigate the impact of flooding, and in turn, protect local populations. The purpose of this study was to evaluate the Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas in Colombia against international regulations in Canada and Spain, in order to determine its limitations and contribute to its improvement. The need to establish a specific corridor that allows for the dynamic development of a river is clear; however, limitations present in the Colombian Technical Guide are identified. The study shows that international regulations provide similar concepts as used in Colombia, but additionally integrate aspects such as regionalization that allows for a better characterization of the channel way, and incorporate the frequency of flooding and its probability of occurrence in the concept of risk when determining the protection zone. The case study analyzed in Dosquebradas - Risaralda aimed at comparing the application of the different standards through hydraulic modeling. It highlights that the current Colombian standard does not offer sufficient details in its implementation phase, which leads to a false sense of security related to inaccuracy and lack of data. Furthermore, the study demonstrates how the Colombian norm is ill-adapted to the conditions of Dosquebradas typical of the Andes region, both in the social and hydraulic aspects, and does not reduce the risk, nor does it improve the protection of the population. Our study considers it pertinent to include risk estimation as an integral part of the methodology when establishing protect flood zone, considering the particularity of water systems, as they are characterized by an heterogeneous natural dynamic behavior.

Keywords: environmental corridor, flood zone determination, hydraulic domain, legislation flood protection zone

Procedia PDF Downloads 113
870 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 412
869 Transition From Economic Growth-Energy Use to Green Growth-Green Energy Towards Environmental Quality: Evidence from Africa Using Econometric Approaches

Authors: Jackson Niyongabo

Abstract:

This study addresses a notable gap in the existing literature on the relationship between energy consumption, economic growth, and CO₂ emissions, particularly within the African context. While numerous studies have explored these dynamics globally and regionally across various development levels, few have delved into the nuances of regions and income levels specific to African countries. Furthermore, the evaluation of the interplay between green growth policies, green energy technologies, and their impact on environmental quality has been underexplored. This research aims to fill these gaps by conducting a comprehensive analysis of the transition from conventional economic growth and energy consumption to a paradigm of green growth coupled with green energy utilization across the African continent from 1980 to 2018. The study is structured into three main parts: an empirical examination of the long-term effects of energy intensity, renewable energy consumption, and economic growth on CO₂ emissions across diverse African regions and income levels; an estimation of the long-term impact of green growth and green energy use on CO₂ emissions for countries implementing green policies within Africa, as well as at regional and global levels; and a comparative analysis of the impact of green growth policies on environmental degradation before and after implementation. Employing advanced econometric methods and panel estimators, the study utilizes a testing framework, panel unit tests, and various estimators to derive meaningful insights. The anticipated results and conclusions will be elucidated through causality tests, impulse response, and variance decomposition analyses, contributing valuable knowledge to the discourse on sustainable development in the African context.

Keywords: economic growth, green growth, energy consumption, CO₂ emissions, econometric models, green energy

Procedia PDF Downloads 58
868 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
867 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings

Procedia PDF Downloads 474
866 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 80
865 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
864 Anthropometric Measurements of Facial Proportions in Azerbaijan Population

Authors: Nigar Sultanova

Abstract:

Facial morphology is a constant topic of concern for clinicians. When anthropometric methods were introduced into clinical practice to quantify changes in the craniofacial framework, features distinguishing various ethnic group were discovered. Normative data of facial measurements are indispensable to precise determination of the degree of deviations from normal. Establish the reference range of facial proportions in Azerbaijan population by anthropometric measurements of craniofacial complex. The study group consisted of 350 healthy young subjects, 175 males and 175 females, 18 to 25 years of age, from 7 different regions of Azerbaijan. The anthropometric examination was performed according to L.Farkas's method with our modification. In order to determine the morphologic characteristics of seven regions of the craniofacial complex 42 anthropometric measurements were selected. The anthropometric examination. Included the usage of 33 anthropometric landmarks. The 80 indices of the facial proportions, suggested by Farkas and Munro, were calculated: head -10, face - 23, nose - 23, lips - 9, orbits - 11, ears - 4. The date base of the North American white population was used as a reference group. Anthropometric measurements of facial proportions in Azerbaijan population revealed a significant difference between mеn and womеn, according to sexual dimorphism. In comparison with North American whites, considerable differences of facial proportions were observed in the head, face, orbits, labio-oral, nose and ear region. However, in women of the Azerbaijani population, 29 out of 80 proportion indices were similar to the proportions of NAW women. In the men of the Azerbaijani population, 27 out of 80 proportion indices did not reveal a statistically significant difference from the proportions of NAW men. Estimation of the reference range of facial proportions in Azerbaijan population migth be helpful to formulate surgical plan in treatment of congenital or post-traumatic facial deformities successfully.

Keywords: facial morphology, anthropometry, indices of proportion, measurement

Procedia PDF Downloads 117
863 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 88
862 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 138
861 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 103
860 Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017

Authors: Khatia Tavidashvili, Nino Jamrishvili, Valerian Omsarashvili

Abstract:

Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in ‎2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century.

Keywords: hail, Kakheti, meteorology, vertical distribution of the air temperature

Procedia PDF Downloads 172
859 System Identification of Timber Masonry Walls Using Shaking Table Test

Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi

Abstract:

Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition

Procedia PDF Downloads 265
858 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 22
857 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation

Procedia PDF Downloads 104
856 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 80
855 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich

Authors: Lauren M. Cook, Tove A. Larsen

Abstract:

Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.

Keywords: co-benefit estimation, green cities, green roofs, solar panels

Procedia PDF Downloads 102
854 An Estimation of Rice Output Supply Response in Sierra Leone: A Nerlovian Model Approach

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Issa Fofana, Brima Gegbe, Tamba I. Isaac

Abstract:

Rice grain is Sierra Leone’s staple food and the nation imports over 120,000 metric tons annually due to a shortfall in its cultivation. Thus, the insufficient level of the crop's cultivation in Sierra Leone is caused by many problems and this led to the endlessly widening supply and demand for the crop within the country. Consequently, this has instigated the government to spend huge money on the importation of this grain that would have been otherwise cultivated domestically at a cheaper cost. Hence, this research attempts to explore the response of rice supply with respect to its demand in Sierra Leone within the period 1980-2010. The Nerlovian adjustment model to the Sierra Leone rice data set within the period 1980-2010 was used. The estimated trend equations revealed that time had significant effect on output, productivity (yield) and area (acreage) of rice grain within the period 1980-2010 and this occurred generally at the 1% level of significance. The results showed that, almost the entire growth in output had the tendency to increase in the area cultivated to the crop. The time trend variable that was included for government policy intervention showed an insignificant effect on all the variables considered in this research. Therefore, both the short-run and long-run price response was inelastic since all their values were less than one. From the findings above, immediate actions that will lead to productivity growth in rice cultivation are required. To achieve the above, the responsible agencies should provide extension service schemes to farmers as well as motivating them on the adoption of modern rice varieties and technology in their rice cultivation ventures.

Keywords: Nerlovian adjustment model, price elasticities, Sierra Leone, trend equations

Procedia PDF Downloads 234
853 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 175
852 Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM

Authors: Azher Jameel, Ghulam Ashraf Harmain

Abstract:

In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques.

Keywords: XFEM, EFGM, coupled FE-EFGM, level sets, large deformation

Procedia PDF Downloads 448
851 A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, DaoHong Yang

Abstract:

The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia PDF Downloads 100
850 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
849 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 409
848 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
847 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 100
846 Digital Platform for Psychological Assessment Supported by Sensors and Efficiency Algorithms

Authors: Francisco M. Silva

Abstract:

Technology is evolving, creating an impact on our everyday lives and the telehealth industry. Telehealth encapsulates the provision of healthcare services and information via a technological approach. There are several benefits of using web-based methods to provide healthcare help. Nonetheless, few health and psychological help approaches combine this method with wearable sensors. This paper aims to create an online platform for users to receive self-care help and information using wearable sensors. In addition, researchers developing a similar project obtain a solid foundation as a reference. This study provides descriptions and analyses of the software and hardware architecture. Exhibits and explains a heart rate dynamic and efficient algorithm that continuously calculates the desired sensors' values. Presents diagrams that illustrate the website deployment process and the webserver means of handling the sensors' data. The goal is to create a working project using Arduino compatible hardware. Heart rate sensors send their data values to an online platform. A microcontroller board uses an algorithm to calculate the sensor heart rate values and outputs it to a web server. The platform visualizes the sensor's data, summarizes it in a report, and creates alerts for the user. Results showed a solid project structure and communication from the hardware and software. The web server displays the conveyed heart rate sensor's data on the online platform, presenting observations and evaluations.

Keywords: Arduino, heart rate BPM, microcontroller board, telehealth, wearable sensors, web-based healthcare

Procedia PDF Downloads 126
845 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
844 Symmetric Key Encryption Algorithm Using Indian Traditional Musical Scale for Information Security

Authors: Aishwarya Talapuru, Sri Silpa Padmanabhuni, B. Jyoshna

Abstract:

Cryptography helps in preventing threats to information security by providing various algorithms. This study introduces a new symmetric key encryption algorithm for information security which is linked with the "raagas" which means Indian traditional scale and pattern of music notes. This algorithm takes the plain text as input and starts its encryption process. The algorithm then randomly selects a raaga from the list of raagas that is assumed to be present with both sender and the receiver. The plain text is associated with the thus selected raaga and an intermediate cipher-text is formed as the algorithm converts the plain text characters into other characters, depending upon the rules of the algorithm. This intermediate code or cipher text is arranged in various patterns in three different rounds of encryption performed. The total number of rounds in the algorithm is equal to the multiples of 3. To be more specific, the outcome or output of the sequence of first three rounds is again passed as the input to this sequence of rounds recursively, till the total number of rounds of encryption is performed. The raaga selected by the algorithm and the number of rounds performed will be specified at an arbitrary location in the key, in addition to important information regarding the rounds of encryption, embedded in the key which is known by the sender and interpreted only by the receiver, thereby making the algorithm hack proof. The key can be constructed of any number of bits without any restriction to the size. A software application is also developed to demonstrate this process of encryption, which dynamically takes the plain text as input and readily generates the cipher text as output. Therefore, this algorithm stands as one of the strongest tools for information security.

Keywords: cipher text, cryptography, plaintext, raaga

Procedia PDF Downloads 289
843 Cardiovascular Disease Is Common among Patients with Systemic Lupus Erythematosus

Authors: Fathia Ehmouda Zaid, Reim Abudelnbi

Abstract:

Cardiovascular disease is a major cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Patients and method: Cross-section study (68) patients diagnosed as systemic lupus erythematosus (SLE), who visited the outpatient clinic of rheumatology, these patients were interviewed with a structured questionnaire about their past and current clinically for presence of Cardiovascular disease in systemic lupus and use SLEDAI, specific tests [ECG –ECHO –CXRAY] the data are analyzed statistically by Pearson's correlation coefficient was calculated and statistical significance was defined as P< 0.05,during period (2013-2014). Objective: Estimation Cardiovascular disease manifestation of systemic lupus erythematosus, correlation with disease activity, morbidity, and mortality. Result: (68) Patients diagnosed as systemic lupus erythematosus' age range from (18-48 years), M=(13±29Y), Sex were female 66/68 (97.1%), male 2/68 (2.9%),duration of disease range[1-15year], M =[7±8y], we found Cardiovascular disease manifestation of systemic lupus erythematosus 32/68 (47.1%), correlation with disease activity use SLEDAI,(r= 476** p=0.000),Morbidity,(r= .554**; p=0.000) and mortality (r=.181; p=.139), Cardiovascular disease manifestations of systemic lupus erythematosus are pericarditis 8/68 (11.8%), pericardial effusion 6/68 (8.8%), myocarditis 4/68 (5.9 %), valvular lesions (endocarditis) 1/68 (1.5%), pulmonary hypertension (PAH) 12/68 (17.6%), coronary artery disease 1/68 (1.5%), none of patients have conduction abnormalities involvement. Correlation with disease activity use SLEDAI, pericarditis (r= .210, p=.086), pericardial effusion (r= 0.079, p=.520), myocarditis (r= 272*, p=.027), valvular lesions (endocarditis) (r= .112, p= .362), pulmonary hypertension (PAH) (r= .257*, p=.035) and coronary artery disease (r=.075, p=.544) correlation between cardiovascular disease manifestations of systemic lupus erythematosus and specific organ involvement we found Mucocutaneous (r=.091 p= .459), musculoskeletal (MSK) (r=.110 p=.373), Renal disease (r=.278*, p=.022), neurologic disease (r=.085, p=.489) and Hematologic disease (r=-.264*, p=.030). Conclusion: Cardiovascular manifestation is more frequent symptoms with systemic lupus erythematosus (SLE) is 47 % correlation with disease activity and morbidity but not with mortality. Recommendations: Focus research to evaluation and an adequate assessment of cardiovascular complications on the morbidity and mortality of the patients with SLE are still required.

Keywords: cardiovascular disease, systemic lupus erythematosus, disease activity, mortality

Procedia PDF Downloads 444