Search results for: multivariate chemometric
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 691

Search results for: multivariate chemometric

421 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 77
420 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis

Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry

Procedia PDF Downloads 93
419 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.

Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring

Procedia PDF Downloads 401
418 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 397
417 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 243
416 Technology Maps in Energy Applications Based on Patent Trends: A Case Study

Authors: Juan David Sepulveda

Abstract:

This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: energy, technology mapping, patents, univariate analysis

Procedia PDF Downloads 476
415 The Effect of Group Interpersonal Psychotherapy on Eating Disorder Symptom and Fear of Negative Evaluation of Lorestan University Female Students

Authors: S. Gholamrezaei, M. Mehrabizade Honarmand, Y. Zargar

Abstract:

Introduction: This research was designed to assess the effect of group Interpersonal Psychotherapy on eating disorder symptom and fear of negative evaluation of Lorestan University female students. Materials and Methods: In this experimental study, 641 female students were randomly selected from various faculties of Lorestan University. Eating disorders symptoms and fear of negative evaluation were assessed by the Eating Attitudes Test (EAT-26), and Fear of Negative Evaluation Scale, Leary (FNES-B). Data were analyzed by SPSS software (multivariate analyze tests were used). Results: Interpersonal Psychotherapy can improve the eating disorder symptoms and reduce the fear of negative evaluation in girl students of group control in compare with control group. Conclusion: Interpersonal psychotherapy can be effective for eating disorder symptoms, and fear of negative evaluation among female students. Thus, it is suggested that this kind of psychotherapy was used for other psychological disease.

Keywords: interpersonal psychotherapy, eating disorder, fear of negative evaluation, students

Procedia PDF Downloads 342
414 The Impact of Citizens’ Involvement on Their Perception of the Brand’s Image: The Case of the City of Casablanca

Authors: Abderrahmane Mousstain, Ez-Zohra Belkadi

Abstract:

Many authors support more participatory and inclusive place branding practices that empower stakeholders’ participation. According to this participatory point of view, the effectiveness of place branding strategies cannot be achieved without citizen involvement. However, the role of all residents as key participants in the city branding process has not been widely discussed. The aim of this paper was to determine how citizens’ involvement impacts their perceptions of the city's image, using a multivariate model. To test our hypotheses hypothetical-deductive reasoning by the quantitative method was chosen. Our investigation is based on data collected through a survey among 200 citizens of Casablanca. Results show that the more citizens are involved, the more they tend to evaluate the image of the brand positively. Additionally, the degree of involvement seems to impact satisfaction and a sense of belonging. As well, the more citizen develops a sense of belonging to the city, the more favorable his or her perception of the brand image is. Ultimately, the role of citizens shouldn’t be limited to reception. They are also Co-creators of the brand, who ensure the correlation of the brand with authentic place roots.

Keywords: citybranding, sense of belonging, satisfaction, impact, brand’s image

Procedia PDF Downloads 177
413 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez

Abstract:

Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.

Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma

Procedia PDF Downloads 230
412 Severe Bone Marrow Edema on Sacroiliac Joint MRI Increases the Risk of Low BMD in Patients with Axial Spondyloarthritis

Authors: Kwi Young Kang

Abstract:

Objective: To determine the association between inflammatory and structural lesions on sacroiliac joint (SIJ) MRI and BMD and to identify risk factors for low BMD in patients with axial spondyloarthritis (axSpA). Methods: Seventy-six patients who fulfilled the ASAS axSpA criteria were enrolled. All underwent SIJ MRI and BMD measurement at the lumbar spine, femoral neck, and total hip. Inflammatory and structural lesions on SIJ MRI were scored. Laboratory tests and assessment of radiographic and disease activity were performed at the time of MRI. The association between SIJ MRI findings and BMD was evaluated. Results: Among the 76 patients, 14 (18%) had low BMD. Patients with low BMD showed significantly higher bone marrow edema (BME) and deep BME scores on MRI than those with normal BMD (p<0.047 and 0.007, respectively). Inflammatory lesions on SIJ MRI correlated with BMD at the femoral neck and total hip. Multivariate analysis identified the presence of deep BME on SIJ MRI, increased CRP, and sacroiliitis on X-ray as risk factors for low BMD (OR: 5.6, 14.6, and 2.5, respectively). Conclusion: The presence of deep BME on SIJ MRI, increased CRP levels, and severity of sacroiliitis on X-ray were independent risk factors for low BMD.

Keywords: axial spondyloarthritis, sacroiliac joint MRI, bone mineral density, sacroiliitis

Procedia PDF Downloads 533
411 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 272
410 Variability of Metal Composition and Concentrations in Road Dust in the Urban Environment

Authors: Sandya Mummullage, Prasanna Egodawatta, Ashantha Goonetilleke, Godwin A. Ayoko

Abstract:

Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in four different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations inroad dust differs considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper, and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.

Keywords: metals build-up, pollutant accumulation, stormwater quality, urban road dust

Procedia PDF Downloads 293
409 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 274
408 Exploring Disruptive Innovation Capacity Effects on Firm Performance: An Investigation in Industries 4.0

Authors: Selma R. Oliveira, E. W. Cazarini

Abstract:

Recently, studies have referenced innovation as a key factor affecting the performance of firms. Companies make use of its innovative capacities to achieve sustainable competitive advantage. In this perspective, the objective of this paper is to contribute to innovation planning policies in industry 4.0. Thus, this paper examines the disruptive innovation capacity on firm performance in Europe. This procedure was prepared according to the following phases: Phase 1: Determination of the conceptual model; and Phase 2: Verification of the conceptual model. The research was initially conducted based on the specialized literature, which extracted the data regarding the constructs/structure and content in order to build the model. The research involved the intervention of experts knowledgeable on the object studied, selected by technical-scientific criteria. The data were extracted using an assessment matrix. To reduce subjectivity in the results achieved the following methods were used complementarily and in combination: multicriteria analysis, multivariate analysis, psychometric scaling and neurofuzzy technology. The data were extracted using an assessment matrix and the results were satisfactory, validating the modeling approach.

Keywords: disruptive innovation, capacity, performance, Industry 4.0

Procedia PDF Downloads 165
407 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 275
406 Prevalence and Risk Factors of Diabetes and Its Association with Com-Morbidities among South Indian Women

Authors: Balasaheb Bansode

Abstract:

Diabetes is a very important component in non-communicable diseases. Diabetes ailment is a route of the multi-morbidities ailments. The South Indian states are almost completing the demographic transition in India. The study objectives present the prevalence of diabetes and its association with co-morbidities among the south Indian women. The study based on National Family Health Survey fourth round (NFHS) 4 conducted in 2015-16. The univariate, bivariate and multivariate analyses techniques have been used to find the association of risk factors and comorbidities with diabetics. The result reveals that the prevalence of diabetes is high among South Indian women. The study shows the women with diabetics have more chances to diagnose with hypertension and anemia comorbidities. The factors responsible for co-morbidities are changing the demographic situation, socioeconomic status, overweight and addict with substance use in South India. The awareness about diabetes prevention and management should be increased through health education, disease management programmes, trained peers and community health workers and community-based programmes.

Keywords: diabetes, risk factors, comorbidities, women

Procedia PDF Downloads 185
405 Metabolomics Fingerprinting Analysis of Melastoma malabathricum L. Leaf of Geographical Variation Using HPLC-DAD Combined with Chemometric Tools

Authors: Dian Mayasari, Yosi Bayu Murti, Sylvia Utami Tunjung Pratiwi, Sudarsono

Abstract:

Melastoma malabathricum L. is an Indo-Pacific herb that has been traditionally used to treat several ailments such as wounds, dysentery, diarrhea, toothache, and diabetes. This plant is common across tropical Indo-Pacific archipelagos and is tolerant of a range of soils, from low-lying areas subject to saltwater inundation to the salt-free conditions of mountain slopes. How the soil and environmental variation influences secondary metabolite production in the herb, and an understanding of the plant’s utility as traditional medicine, remain largely unknown and unexplored. The objective of this study is to evaluate the variability of the metabolic profiles of M. malabathricum L. across its geographic distribution. By employing high-performance liquid chromatography-diode array detector (HPLC-DAD), a highly established, simple, sensitive, and reliable method was employed for establishing the chemical fingerprints of 72 samples of M. malabathricum L. leaves from various geographical locations in Indonesia. Specimens collected from six terrestrial and archipelago regions of Indonesia were analyzed by HPLC to generate chromatogram peak profiles that could be compared across each region. Data corresponding to the common peak areas of HPLC chromatographic fingerprint were analyzed by hierarchical component analysis (HCA) and principal component analysis (PCA) to extract information on the most significant variables contributing to characterization and classification of analyzed samples data. Principal component values were identified as PC1 and PC2 with 41.14% and 19.32%, respectively. Based on variety and origin, the high-performance liquid chromatography method validated the chemical fingerprint results used to screen the in vitro antioxidant activity of M. malabathricum L. The result shows that the developed method has potential values for the quality of similar M. malabathrium L. samples. These findings provide a pathway for the development and utilization of references for the identification of M. malabathricum L. Our results indicate the importance of considering geographic distribution during field-collection efforts as they demonstrate regional metabolic variation in secondary metabolites of M. malabathricum L., as illustrated by HPLC chromatogram peaks and their antioxidant activities. The results also confirm the utility of this simple approach to a rapid evaluation of metabolic variation between plants and their potential ethnobotanical properties, potentially due to the environments from whence they were collected. This information will facilitate the optimization of growth conditions to suit particular medicinal qualities.

Keywords: fingerprint, high performance liquid chromatography, Melastoma malabathricum l., metabolic profiles, principal component analysis

Procedia PDF Downloads 163
404 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis

Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai

Abstract:

The purpose of this study is to forecast the influences of Information and Communication Technology (ICT) on the structural changes of Japanese economies based on Leontief Input-Output (IO) coefficients. This study establishes a statistical analysis to predict the future interrelationships among industries. We employ the Constrained Multivariate Regression (CMR) model to analyze the historical changes of input-output coefficients. Statistical significance of the model is then tested by Likelihood Ratio Test (LRT). In our model, ICT is represented by two explanatory variables, i.e. computers (including main parts and accessories) and telecommunications equipment. A previous study, which analyzed the influences of these variables on the structural changes of Japanese industrial sectors from 1985-2005, concluded that these variables had significant influences on the changes in the business circumstances of Japanese commerce, business services and office supplies, and personal services sectors. The projected future Japanese economic structure based on the above forecast generates the differentiated direct and indirect outcomes of ICT penetration.

Keywords: forecast, ICT, industrial structural changes, statistical analysis

Procedia PDF Downloads 375
403 Effect of Education and Occupation on Smokeless Tobacco Use: A Study of Male Adults in India

Authors: Ramu Rawat

Abstract:

Background: This paper is an effort to analyze the role of education and occupation as critical determinants in using smokeless tobacco among male adults in India and its selected states. Methodology: Global Adult Tobacco Survey (GATS) India 2009-10 data have been used for this study. Bivariate and Multivariate (Cox proportion hazards model) analyses are carried out to measure the impact of education and occupation on use of smokeless tobacco among male adults in India. Results and Conclusion: The study evidently suggests that, majority of Indian male adults are using Khaini and Gutkha (local names for smokeless tobacco). The analysis also shows that education and occupation are two important critical predictors of use of smokeless tobacco. The males at younger age with no or little education from rural area use smokeless tobacco more than their counterpart group from urban areas. This distinction can be attributable to their lack of knowledge or ignorance about the consequences of tobacco consumption. Place of residence played significant role for declining use of smokeless tobacco along with the effect of society. Society awareness about harmful effects of smokeless tobacco with local level government may play important role for controlling the use of any type of tobacco or tobacco products in India.

Keywords: smokeless tobacco, male, Khaini, education, occupation

Procedia PDF Downloads 227
402 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 259
401 Predictive Factors of Prognosis in Acute Stroke Patients Receiving Traditional Chinese Medicine Therapy: A Retrospective Study

Authors: Shaoyi Lu

Abstract:

Background: Traditional Chinese medicine has been used to treat stroke, which is a major cause of morbidity and mortality. There is, however, no clear agreement about the optimal timing, population, efficacy, and predictive prognosis factors of traditional Chinese medicine supplemental therapy. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend. Key words: traditional Chinese medicine, acupuncture, Stroke, NIH stroke scale, Barthel index, predictive factor. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend.

Keywords: traditional Chinese medicine, complementary and alternative medicine, stroke, acupuncture

Procedia PDF Downloads 360
400 Prevalence and Determinants of Iron Deficiency Anaemia in Pregnant Xhosa Women

Authors: A. Abiodun, G. George, B. Longo-Mbenza, E. Blanco-Blanco

Abstract:

Objective: To determine the prevalence and determinants of iron-deficiency anaemia in pregnant Xhosa women practising geophagia. Methods: This cross-sectional study was conducted among pregnant Xhosa women from rural areas of Mthatha, South Africa, according to socio-demographic, geophagia, haematologic and iron metabolism profiles using univariate and multivariate analyses. Anaemia was defined by haemoglobin <11 g/dL and iron deficiency was defined by serum ferritin < 12 ug/L. Results: Out of 210 pregnant women (mean age =23±5.3 for geophagic and 25.6±5.3 for non-geophagic), 51.4% (n = 108) had iron deficiency anaemia (50.9% geophagic and 49.1% non-geophagic). After adjusting for confounders, only geophagia (OR=2.1 95% CI 1.1-4.2; P=0.029) and mean corpuscular haemoglobin concentration categories (< 30.5 g/dL with OR=16.6 95% CI 6.8-40.2; P < 0.0001; 30.5-31.5 g/dL with OR=2.9 95% CI 1.4-6.1; P=0.006; and ≥ 31.5 g/dL with OR=1) were identified as the most important significant and independent determinants of iron deficiency anaemia. Conclusion: The study results point to the potential harm geophagia can cause in pregnant women. The prevalence of iron deficiency anaemia is unacceptably high. Geophagic behaviour, low MCHC presented as particular risk factors of iron deficiency anaemia in this study. Education and counselling about appropriate diet during pregnancy and prevention of geophagic behaviour (and health consequences) are needed among pregnant Xhosa women.

Keywords: geophagia, pregnancy, iron deficiency anaemia, Xhosa

Procedia PDF Downloads 377
399 The Effectiveness of Intensive Short-Term Dynamic Psychotherapy on Ambiguity Tolerance, Emotional Intelligence and Stress Coping Strategies in Financial Market Traders

Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni

Abstract:

This study aims to evaluate the effectiveness of intensive short-term dynamic psychotherapy (ISTDP) on ambiguity tolerance, emotional intelligence and stress coping strategies in financial market traders. The methodology of this study was quasi-experimental, pre-test and post-test with control group. The statistical population of this study includes all students at Jabalameli Information Technology Academy in 2022. Among them, 30 people were selected by voluntary sampling through interviews, and were randomly divided into two experimental and control groups of 51 people. And the components were measured according to McLain Ambiguity Tolerance Questionnaire, Bar-On Emotional Intelligence and Lazarus Stress Coping Strategies. The data were obtained by SPSS software and were analyzed by using multivariate analysis of covariance. The results indicate that intensive short-term dynamic psychotherapy influences the emotional intelligence as well as the ambiguity tolerance of traders.

Keywords: ISTDP, ambiguity tolerance, trading, emotional intelligence, stress

Procedia PDF Downloads 88
398 Disagreement in Spousal Report of Current Contraceptive Use in India and Its Determinants

Authors: Dipti Govil, Nidhi Khosla

Abstract:

Couple-level reports of contraception are important as wives and husbands may give different reports about contraceptive use. Using matched couple-data (N=62910), from India's NFHS–IV (2015-16), this paper examines concordance in spousal reports of current contraceptive use and its differentials. Reporting of contraceptive use was higher among wives (59%) than husbands (25%). Concordance was low; 16.5% of couples reported the use of the same method, while 21% reported the use of any method. There existed a huge denial from husbands on the use of female sterilization. Reconstruction of contraceptive use among men increased concordance by 10%. Multivariate analysis shows that concordance was low in urban and Southern India, among younger women and women with lower wealth-index. Men's control over household decision-making and negative attitudes towards contraception were associated with a lower concordance. Findings highlight the importance of using couple-level data to estimate contraceptive prevalence, the role of education programs to inculcate positive attitudes towards contraception, fostering gender equality, and involving men into family planning efforts. The results also raise the issue of data quality as the questions were asked differently from men and women, which might have contributed to wide discordance.

Keywords: concordance, contraceptive use, couple, female sterilisation, India

Procedia PDF Downloads 130
397 Changing Pattern and Trend of Head of Household in India: Evidence from Various Rounds of National Family Health Survey

Authors: Moslem Hossain, Mukesh Kumar, K. C. Das

Abstract:

Background: Household headship is the crucial decision-maker as well as the economic provider of the household. In Indian society, household heads occupied by men from the pre-colonial period. This study attempt to examine the changes in household headship in India. Methods: The study used univariate and multivariate analysis to examine the trends and patterns of different characteristics of the household head using the various rounds of national family health survey data. Results: The female household head is gradually increasing; on the other hand, the male-dominant is decreasing over the four national family and health surveys. The mean age of the household head is higher in rural areas than urban India. Only ten percentage of Households are higher educated, and 83 percent of the male household head has a low standard of living. The mean family size of the household has a decreasing trend in both the urban and rural areas during the study period. Conclusions: The result indicates that women's autonomy is increasing and leading to inclusive growth, which introduced in the eleven five year plan, especially focuses on the woman and young people in the country.

Keywords: household head, national family health survey, mean age, mean family size

Procedia PDF Downloads 133
396 A CD40 Variant is Associated with Systemic Bone Loss Among Patients with Rheumatoid Arthritis

Authors: Rim Sghiri, Samia Al Shouli, Hana Benhassine, Nejla Elamri, Zahid Shakoor, Foued Slama, Adel Almogren, Hala Zeglaoui, Elyes Bouajina, Ramzi Zemni

Abstract:

Objectives: Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and a variant of CD40 gene, which is known to play a critical role in both immune response and bone homeostasis among patients with RA. Methods: CD40 rs48104850 was genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). Results: Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR=0.31, 95% CI= 0.16-0.59, p=3.84 x 10₋₄). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788± 0.136 versus 0.826± 0.146g/cm², p=0.001). Conclusion: This study, for the first time ever, demonstrated an association between a CD40 genetic variant and SBL among patients with RA.

Keywords: rheumatoid arthritis, CD40 gene, bone mineral density, systemic bone loss, rs48104850

Procedia PDF Downloads 462
395 Investigating Associations Between Genes Linked to Social Behavior and Early Covid-19 Spread Using Multivariate Linear Regression Analysis

Authors: Gwenyth C. Eichfeld

Abstract:

Variation in global COVID-19 spread is partly explained by social and behavioral factors. Many of these behaviors are linked to genetics. The short polymorphism of the 5-HTTLPR promoter region of the SLC6A4 gene is linked to collectivism. The seven-repeat polymorphism of the DRD4 gene is linked to risk-taking, migration, sensation-seeking, and impulsivity. Fewer CAG repeats in the androgen receptor gene are linked to impulsivity. This study investigates an association between the country-level frequency of these variants and early Covid-19 spread. Results of regression analysis indicate a significant association between increased country-wide prevalence of the short allele of the SLC6A4 gene and decreased COVID-19 spread when other factors that have been linked to COVID-19 are controlled for. Additionally, results show that the short allele of the SLC6A4 gene is associated with COVID-19 spread through GDP and percent urbanization rather than collectivism. Results showed no significant association between the frequency of the DRD4 polymorphism nor the androgen receptor polymorphism with early COVID-19 spread.

Keywords: neuroscience, genetics, population sciences, Covid-19

Procedia PDF Downloads 37
394 Assessment of Association Between Microalbuminuria and Lung Function Test Among the Community of Jimma Town

Authors: Diriba Dereje

Abstract:

Background: Cardiac and renal disease are the most prevalent chronic non-communicable diseases (CNCD) affecting the community in a significant manner. The best and recommended method in halting CNCD is by working on prevention as early as possible. This is only possible if early surrogate markers are identified. As part of the stated solution, this study will identify an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Objective: The main aim of this study was to assess an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Methodology: Community based cross sectional study was conducted among 384 adult in Jimma town. A systematic sampling technique was used in selecting participants to the study. In searching for the possible association, binary and multivariate logistic regression and t-test was conducted. Finally, the association between microalbuminuria and lung function test was well stated in the form of figures and written description. Result and Conclusion: A significant association was found between microalbuminuria and different lung function test parameters.

Keywords: microalbuminuria, lung function, association, test

Procedia PDF Downloads 194
393 Multivariate Analysis of the Relationship between Professional Burnout, Emotional Intelligence and Health Level in Teachers University of Guayaquil

Authors: Viloria Marin Hermes, Paredes Santiago Maritza, Viloria Paredes Jonathan

Abstract:

The aim of this study is to assess the prevalence of Burnout syndrome in a sample of 600 professors at the University of Guayaquil (Ecuador) using the Maslach Burnout Inventory (M.B.I.). In addition, assessment was made of the effects on health from professional burnout using the General Health Questionnaire (G.H.Q.-28), and the influence of Emotional Intelligence on prevention of its symptoms using the Spanish version of the Trait Meta-Mood Scale (T.M.M.S.-24). After confirmation of the underlying factor structure, the three measurement tools showed high levels of internal consistency, and specific cut-off points were proposed for the group of Latin American academics in the M.B.I. Statistical analysis showed the syndrome is present extensively, particularly on medium levels, with notably low scores given for Professional Self-Esteem. The application of Canonical Correspondence Analysis revealed that low levels of self-esteem are related to depression, with a lack of personal resources related to anxiety and insomnia, whereas the ability to perceive and control emotions and feelings improves perceptions of professional effectiveness and performance.

Keywords: burnout, academics, emotional intelligence, general health, canonical correspondence analysis

Procedia PDF Downloads 370
392 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 122