Search results for: mortality prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3509

Search results for: mortality prediction

3239 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 147
3238 The Relationship between the Skill Mix Model and Patient Mortality: A Systematic Review

Authors: Yi-Fung Lin, Shiow-Ching Shun, Wen-Yu Hu

Abstract:

Background: A skill mix model is regarded as one of the most effective methods of reducing nursing shortages, as well as easing nursing staff workloads and labor costs. Although this model shows several benefits for the health workforce, the relationship between the optimal model of skill mix and the patient mortality rate remains to be discovered. Objectives: This review aimed to explore the relationship between the skill mix model and patient mortality rate in acute care hospitals. Data Sources: A systematic search of the PubMed, Web of Science, Embase, and Cochrane Library databases and researchers retrieved studies published between January 1986 and March 2022. Review methods: Two independent reviewers screened the titles and abstracts based on selection criteria, extracted the data, and performed critical appraisals using the STROBE checklist of each included study. The studies focused on adult patients in acute care hospitals, and the skill mix model and patient mortality rate were included in the analysis. Results: Six included studies were conducted in the USA, Canada, Italy, Taiwan, and European countries (Belgium, England, Finland, Ireland, Spain, and Switzerland), including patients in medical, surgical, and intensive care units. There were both nurses and nursing assistants in their skill mix team. This main finding is that three studies (324,592 participants) show evidence of fewer mortality rates associated with hospitals with a higher percentage of registered nurse staff (range percentage of registered nurse staff 36.1%-100%), but three articles (1,122,270 participants) did not find the same result (range of percentage of registered nurse staff 46%-96%). However, based on appraisal findings, those showing a significant association all meet good quality standards, but only one-third of their counterparts. Conclusions: In light of the limited amount and quality of published research in this review, it is prudent to treat the findings with caution. Although the evidence is not insufficient certainty to draw conclusions about the relationship between nurse staffing level and patients' mortality, this review lights the direction of relevant studies in the future. The limitation of this article is the variation in skill mix models among countries and institutions, making it impossible to do a meta-analysis to compare them further.

Keywords: nurse staffing level, nursing assistants, mortality, skill mix

Procedia PDF Downloads 121
3237 Validation Pulmonary Embolus Severity Index Score Early Mortality Rate at 1, 3, 7 Days in Patients with a Diagnosis of Pulmonary Embolism

Authors: Nicholas Marinus Batt, Angus Radford, Khaled Saraya

Abstract:

Pulmonary Embolus Severity Index (PESI) score is a well-validated decision-making score grading mortality rates (MR) in patients with a suspected or confirmed diagnosis of pulmonary embolism (PE) into 5 classes. Thirty and 90 days MR in class I and II are lower allowing the treatment of these patients as outpatients. In a London District General Hospital (DGH) with mixed ethnicity and high disease burden, we looked at MR at 1, 3, and 7 days of all PESI score classes. Our pilot study of 112 patients showed MR of 0% in class I, II, and III. The current study includes positive Computed Tomographic Scans (CT scans) for PE over the following three years (total of 555). MR was calculated for all PESI score classes at 1, 3 & 7 days. Thirty days MR was additionally calculated to validate the study. Our initial results so far are in line with our pilot studies. Further subgroup analysis accounting for the local co-morbidities and disease burden and its impact on the MR will be undertaken.

Keywords: Pulmonary Embolism (PE), Pulmonary Embolism Severity Index (PESI) score, mortality rate (MR), CT pulmonary artery

Procedia PDF Downloads 268
3236 ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction

Authors: Salman Mohamadi, Seyed Mohammad Ali Tayaranian Hosseini, Hamidreza Amindavar

Abstract:

In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.

Keywords: epileptic seizure prediction , ARIMA, ARCH and GARCH modeling, heteroskedasticity, EEG

Procedia PDF Downloads 410
3235 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 167
3234 Utility of Thromboelastography to Reduce Coagulation-Related Mortality and Blood Component Rate in Neurosurgery ICU

Authors: Renu Saini, Deepak Agrawal

Abstract:

Background: Patients with head and spinal cord injury frequently have deranged coagulation profiles and require blood products transfusion perioperatively. Thromboelastography (TEG) is a ‘bedside’ global test of coagulation which may have role in deciding the need of transfusion in such patients. Aim: To assess the usefulness of TEG in department of neurosurgery in decreasing transfusion rates and coagulation-related mortality in traumatic head and spinal cord injury. Method and Methodology: A retrospective comparative study was carried out in the department of neurosurgery over a period of 1 year. There are two groups in this study. ‘Control’ group constitutes the patients in whom data was collected over 6 months (1/6/2009-31/12/2009) prior to installation of TEG machine. ‘Test’ group includes patients in whom data was collected over 6months (1/1/2013-30/6/2013) post TEG installation. Total no. of platelet, FFP, and cryoprecipitate transfusions were noted in both groups along with in hospital mortality and length of stay. Result: Both groups were matched in age and sex of patients, number of head and spinal cord injury cases, number of patients with thrombocytopenia and number of patients who underwent operation. Total 178 patients (135 head injury and 43 spinal cord injury patents) were admitted in neurosurgery department during time period June 2009 to December 2009 i.e. prior to TEG installation and after TEG installation a total of 243 patients(197 head injury and 46 spinal cord injury patents) were admitted. After TEG introduction platelet transfusion significantly reduced (p=0.000) compare to control group (67 units to 34 units). Mortality rate was found significantly reduced after installation (77 patients to 57 patients, P=0.000). Length of stay was reduced significantly (Prior installation 1-211days and after installation 1-115days, p=0.02). Conclusion: Bedside TEG can dramatically reduce platelet transfusion components requirement in department of neurosurgery. TEG also lead to a drastic decrease in mortality rate and length of stay in patients with traumatic head and spinal cord injuries. We recommend its use as a standard of care in the patients with traumatic head and spinal cord injuries.

Keywords: blood component transfusion, mortality, neurosurgery ICU, thromboelastography

Procedia PDF Downloads 329
3233 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 386
3232 The Impact of Hospital Strikes on Patient Care: Evidence from 135 Strikes in the Portuguese National Health System

Authors: Eduardo Costa

Abstract:

Hospital strikes in the Portuguese National Health Service (NHS) are becoming increasingly frequent, raising concerns in what respects patient safety. In fact, data shows that mortality rates for patients admitted during strikes are up to 30% higher than for patients admitted in other days. This paper analyses the effects of hospital strikes on patients’ outcomes. Specifically, it analyzes the impact of different strikes (physicians, nurses and other health professionals), on in-hospital mortality rates, readmission rates and length of stay. The paper uses patient-level data containing all NHS hospital admissions in mainland Portugal from 2012 to 2017, together with a comprehensive strike dataset comprising over 250 strike days (19 physicians-strike days, 150 nurses-strike days and 50 other health professionals-strike days) from 135 different strikes. The paper uses a linear probability model and controls for hospital and regional characteristics, time trends, and changes in patients’ composition and diagnoses. Preliminary results suggest a 6-7% increase in in-hospital mortality rates for patients exposed to physicians’ strikes. The effect is smaller for patients exposed to nurses’ strikes (2-5%). Patients exposed to nurses strikes during their stay have, on average, higher 30-days urgent readmission rates (4%). Length of stay also seems to increase for patients exposed to any strike. Results – conditional on further testing, namely on non-linear models - suggest that hospital operations and service levels are partially disrupted during strikes.

Keywords: health sector strikes, in-hospital mortality rate, length of stay, readmission rate

Procedia PDF Downloads 138
3231 Impact of Coccidia on Mortality and Weight Growth in Japanese Quail Coturnix japonica (Aves, Phasianidae) in Algeria

Authors: Amina Smai, Fairouz Haddadj, Habiba Saadi-Idouhar, Meriem Aissi, Safia Zenia, Salaheddine Doumandji

Abstract:

Coccidiosis is a very common intestinal parasitic disease caused by a worldwide distributed protozoan of the genus Eimeria. This disease is very common in young birds beyond the second week of life, especially in land-based breeding. The study was carried out in a hunting center of Zeralda located in the north-east of Algiers. The objective of our work is to study the evolution of coccidiosis in quails from 1 to 35 days old by collecting their droppings daily. These are analyzed in the laboratory using the flotation method and the Mac Master one to count coccidia. Weight changes are taken into account as well as mortality in parallel with certain zootechnical parameters such as density. The species of coccidia recovered is Eimeria coturnicis. The results showed that there is an average evolution of mortality of individuals with a rate of 13.33% due to the presence of coccidia with a significant regression (p=0.031). The weight of the quails increases with the age of the animal with a rapid growth rate from the 3rd week onwards. Indeed, the statistical analysis reveals that the evolution of the number did not affect the evolution of the weight (p=0.70) and the GMQ (R=0.52).

Keywords: coccidiosis, Coturnix japonica, daily average gain, weight

Procedia PDF Downloads 187
3230 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 153
3229 Legal Judgment Prediction through Indictments via Data Visualization in Chinese

Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun

Abstract:

Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.

Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization

Procedia PDF Downloads 125
3228 Neonatal Sepsis in Dogs Attend in Veterinary Hospital of the Sao Paulo State University, Botucatu, Brazil – Incidence, Clinical Aspects and Mortality

Authors: Maria Lucia G. Lourenco, Keylla H. N. P. Pereira, Vivane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

Neonatal sepsis is a systemic response to the acute generalized infection caused by one or more bacterial agents, representing the main infectious cause of neonatal mortality in dogs during the first three weeks of life. This study aims to describe the incidence of sepsis in neonate dogs, as well as the main clinical signs and mortality rates. The study included 735 neonates admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, between January 2018 and November 2019. Seven hundred thirty-five neonates, 14% (98/703) presented neonatal sepsis. The main sources of infection for the neonates were intrauterine (72.5%, 71/98), lactogenic (13.2%, 13/98), umbilical (5.1%, 5/98) and unidentified sources (9.2%, 9/98). The main non-specific clinical signs observed in the newborns were weakness, depression, impaired or absent reflexes, hypothermia, hypoglycemia, dehydration, reduced muscle tonus and diarrhea. The newborns also manifested clinical signs of severe infection, such as hyperemia in the abdominal and anal regions, omphalitis, hematuria, abdomen and extremities with purplish-blue coloration necrosing injuries in the pads, bradycardia, dyspnea, epistaxis, hypotension and evolution to septic shock. Infections acquired during intrauterine life led to the onset of the clinical signs at the time of birth, with fast evolution during the first hours of life. On the other hand, infections acquired via milk or umbilical cord presented clinical signs later. The total mortality rate was 5.4% (38/703) and the mortality rate among the neonates with sepsis was 38.7% (38/98). The early mortality rate (0 to 2 days) accounted for 86.9% (33/38) and the late mortality rate (3 to 30 days) for 13.1% (5/38) of the deaths among the newborns with sepsis. The main bacterial agents observed were Staphylococcus spp., Streptococcus spp., Proteus spp. Mannheimia spp. and Escherichia coli. Neonatal sepsis evolves quickly and may lead to high mortality in a litter. The prognosis is usually favorable if the diagnosis is reached early and the antibiotic therapy instituted as soon as possible, even before the results of blood cultures and antibiograms. The therapeutic recommendations should meet the special physiological conditions of a neonate in terms of metabolism and excretion of medication. Therefore, it is of utmost importance that the veterinarian is knowledgeable regarding neonatology to provide effective intervention and improve the survival rates of these patients.

Keywords: Neonatal infection , bacteria, puppies, newborn

Procedia PDF Downloads 119
3227 Assessment of Delirium, It's Possible Risk Factors and Outcome in Patient Admitted in Medical Intensive Care Unit

Authors: Rupesh K. Chaudhary, Narinder P. Jain, Rajesh Mahajan, Rajat Manchanda

Abstract:

Introduction: Delirium is a complex, multifactorial neuropsychiatric syndrome comprising a broad range of cognitive and neurobehavioral symptoms. In critically ill patients, it may develop secondary to multiple predisposing factors. Although it can be transient and irreversible but if left untreated may lead to long term cognitive dysfunction. Early identification and assessment of risk factors usually help in appropriate management of delirium which in turn leads to decreased hospital stay, cost of therapy and mortality. Aim and Objective: Aim of the present study was to estimate the incidence of delirium using a validated scale in medical ICU patients and to determine the associated risk factors and outcomes. Material and Method: A prospective study in an 18-bed medical-intensive care unit (ICU) was undertaken. A total of 357 consecutive patients admitted to ICU for more than 24 hours were assessed. These patients were screened with the help of Confusion Assessment Method for Intensive Care Unit -CAM-ICU, Richmond Agitation and Sedation Scale, Screening Checklist for delirium and APACHE II. Appropiate statistical analysis was done to evaluate the risk factors influencing mortality in delirium. Results: Delirium occurred in 54.6% of 194 patients. Risk of delirium was independently associated with a history of hypertension, diabetes but not with severity of illness APACHE II score. Delirium was linked to longer ICU stay 13.08 ± 9.6 ver 7.07 ± 4.98 days, higher ICU mortality (35.8% % vs. 17.0%). Conclusion: Our study concluded that delirium poses a great risk factor in the outcome of the patient and carries high mortality, so a timely intervention helps in addressing these issues.

Keywords: delirium, risk factors, outcome, intervention

Procedia PDF Downloads 168
3226 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction

Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian

Abstract:

Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.

Keywords: marijuana, youth, integrative model of behavioral prediction, Iran

Procedia PDF Downloads 557
3225 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 408
3224 Effects of Essential Oils on the Intestinal Microflora of Termite (Heterotermes indicola)

Authors: Ayesha Aihetasham, Najma Arshad, Sobia Khan

Abstract:

Damage causes by subterranean termites are of major concern today. Termites majorly treated with pesticides resulted in several problems related to health and environment. For this reason, plant-derived natural products specifically essential oils have been evaluated in order to control termites. The aim of the present study was to investigate the antitermitic potential of six essential oils on Heterotermes indicola subterranean termite. No-choice bioassay was used to assess the termiticidal action of essential oils. Further, gut from each set of treated termite group was extracted and analyzed for reduction in number of protozoa and bacteria by protozoal count method using haemocytometer and viable bacterial plate count (dilution method) respectively. In no-choice bioassay it was found that Foeniculum vulgare oil causes high degree of mortality 90 % average mortality at 10 mg oil concentration (10mg/0.42g weight of filter paper). Least mortality appeared to be due to Citrus sinensis oil (43.33 % average mortality at 10 mg/0.42g). The highest activity verified to be of Foeniculum vulgare followed by Eruca sativa, Trigonella foenum-graecum, Peganum harmala, Syzygium cumini and Citrus sinensis. The essential oil which caused maximum reduction in number of protozoa was P. harmala followed by T. foenum-graecum and E. sativa. In case of bacterial count E. sativa oil indicated maximum decrease in bacterial number (6.4×10⁹ CFU/ml). It is concluded that F. vulgare, E. sativa and P. harmala essential oils are highly effective against H. indicola termite and its gut microflora.

Keywords: bacterial count, essential oils, Heterotermes indicola, protozoal count

Procedia PDF Downloads 251
3223 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 490
3222 Mobile Based Long Range Weather Prediction System for the Farmers of Rural Areas of Pakistan

Authors: Zeeshan Muzammal, Usama Latif, Fouzia Younas, Syed Muhammad Hassan, Samia Razaq

Abstract:

Unexpected rainfall has always been an issue in the lifetime of crops and brings destruction for the farmers who harvest them. Unfortunately, Pakistan is one of the countries in which untimely rain impacts badly on crops like wash out of seeds and pesticides etc. Pakistan’s GDP is related to agriculture, especially in rural areas farmers sometimes quit farming because leverage of huge loss to their crops. Through our surveys and research, we came to know that farmers in the rural areas of Pakistan need rain information to avoid damages to their crops from rain. We developed a prototype using ICTs to inform the farmers about rain one week in advance. Our proposed solution has two ways of informing the farmers. In first we send daily messages about weekly prediction and also designed a helpline where they can call us to ask about possibility of rain.

Keywords: ICTD, farmers, mobile based, Pakistan, rural areas, weather prediction

Procedia PDF Downloads 578
3221 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 405
3220 Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses

Authors: Quang Minh Dinh, Jian Guang Qin, Sabine Dittmann, Dinh Dac Tran

Abstract:

The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta.

Keywords: Parapcryptes serperaster, otolith, age, pulation structure, Vietnam

Procedia PDF Downloads 659
3219 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 111
3218 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 78
3217 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 474
3216 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 133
3215 Outcomes in New-Onset Diabetic Foot Ulcers Stratified by Etiology

Authors: Pedro Gomes, Lia Ferreira, Sofia Garcia, Jaime Babulal, Luís Costa, Luís Castelo, José Muras, Isabel Gonçalves, Rui Carvalho

Abstract:

Introduction: Foot ulcers and their complications are an important cause of morbidity and mortality in diabetes. Objectives: The present study aims to evaluate the outcomes in terms of need for hospitalization, amputation, healing time and mortality in patients with new-onset diabetic foot ulcers in subgroups stratified by etiology. Methods: A retrospective study based on clinical assessment of patients presenting with new ulcers to a multidisciplinary diabetic foot consult during 2012. Outcomes were determined until September 2014, from hospital registers. Baseline clinical examination was done to classify ulcers as neuropathic, ischemic or neuroischemic. Results: 487 patients with new diabetic foot ulcers were observed; 36%, 15% and 49% of patients had neuropathic, ischemic and neuroischemic ulcers, respectively. For analysis, patients were classified as having predominantly neuropathic (36%) or ischemic foot (64%). The mean age was significantly higher in the group with ischemic foot (70±12 vs 63±12 years; p <0.001), as well as the duration of diabetes (18±10 vs 16 ± 10years, p <0.05). A history of previous amputation was also significantly higher in this group (24.7% vs 15.6%, p <0.05). The evolution of ischemic ulcers was significantly worse, with a greater need for hospitalization (27.2% vs 18%, p <0.05), amputation (11.5% vs 3.6% p <0.05) mainly major amputation (3% vs. 0%; p <0.001) and higher mean healing time (151 days vs 89 days, p <0.05). The mortality rate at 18 months, was also significantly higher in the ischemic foot group (7.3% vs 1.8%, p <0.05). Conclusions: All types of diabetic foot ulcers are associated with high morbidity and mortality, however, the presence of arterial disease confers a poor prognosis. Diabetic foot can be successfully treated only by the multidisciplinary team which can provide more comprehensive and integrated care.

Keywords: diabetes, foot ulcers, etiology, outcome

Procedia PDF Downloads 440
3214 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 393
3213 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 251
3212 A Theoretical to Conceptual Paper: The Use of Phosphodiesterase Inhibitors, Endothelin Receptor Antagonists and/or Prostacyclin Analogs in Acute Pulmonary Embolism

Authors: Ryan M. Monti, Bijal Mehta

Abstract:

In cases of massive pulmonary embolism, defined as acute pulmonary embolism presenting with systemic hypotension or right ventricular dysfunction and impending failure, there is indication that unconventional therapies, such as phosphodiesterase inhibitors, endothelin receptor antagonists, and/or prostacyclin analogs may decrease the morbidity and mortality. Based on the premise that dilating the pulmonary artery will decrease the pulmonary vascular pressure, while simultaneously decreasing the aggregation of platelets, it can be hypothesized that increased blood flow through the pulmonary artery will decrease right heart strain and subsequent morbidity and mortality. While this theory has yet to be formally studied, the recommendations for treating massive pulmonary embolism with phosphodiesterase inhibitors, endothelin receptor antagonists, and/or prostacyclin analogs in conjunction with the current standards of care in massive pulmonary embolism should be formally studied. In particular, patients with massive PE who are unable to undergo thrombolysis/surgical intervention may be the ideal population to study the use of these treatments to determine any decrease in mortality and morbidity (short term and long term).

Keywords: acute pulmonary thromboembolism, treatment of pulmonary embolism, use of phosphodiesterase inhibitors, endothelin receptor antagonists, prostacyclin analogs in PE

Procedia PDF Downloads 229
3211 Impact of Health Indicators on Economic Growth: Application of Ardl Model on Pakistan’s Data Set

Authors: Sheraz Ahmad Choudhary

Abstract:

Health plays a vital role in the growth. The study examined the effect of health indicator on the growth of Pakistan. ARDL model is used to check the growth rate which is affected by the health by using the time series date of Pakistan from 1990 to 2017. Health indicator, fertility rate, life expectancy, foreign direct investment, and infant mortality rate are variables Where the unit root is applied to check the stationarity of the model. consequences find a significant relationship between GDP, foreign direct investment, fertility rate, and life expectancy in the short run, whereas mortality rate effected negatively to economic growth but have significant values. In the long run, foreign direct investment (FDI) and fertility rate(FR) have significantly influenced the GDP. The results show thateconomic growth is positively stimulated by most of the health indicators. The study accomplishes that nations can achieve a high level of economic growth by increasing wellbeing human capital.

Keywords: economic growth, health expenditures, fertility rate, human capital, life expectancy, foreign direct investment, and infant mortality rate

Procedia PDF Downloads 134
3210 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 590