Search results for: mechanism properties
11364 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 15311363 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin
Authors: F. Siahmed, A. Lounis, L. Faghi
Abstract:
The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin
Procedia PDF Downloads 44711362 Virtual Screening of Potential Inhibitors against Efflux Pumps of Mycobacterium tuberculosis
Authors: Gagan Dhawan
Abstract:
Mycobacterium tuberculosis was described as ‘captain of death’ with an inherent property of multiple drug resistance majorly caused by the competent mechanism of efflux pumps. In this study, various open source tools combining chemo-informatics with bioinformatics were used for efficient in-silico drug designing. The efflux pump, Rv1218c, belonging to the ABC transporter superfamily, which is predicted to be a tetronasin-transporter in M. tuberculosis was targeted. Recent studies have shown that Rv1218c forms a complex with two more efflux pumps (Rv1219c and Rv1217c) to provide multidrug resistance to the bacterium. The 3D structure of the protein was modeled (as the structure was unavailable in the previously collected databases on this gene). The TMHMM analysis of this protein in TubercuList has shown that this protein is present in the outer membrane of the bacterium. Virtual screening of compounds from various publically available chemical libraries was performed on the M. tuberculosis protein using various open source tools. These ligands were further assessed where various physicochemical properties were evaluated and analyzed. On comparison of different physicochemical properties, toxicity and docking, the ligand 2-(hydroxymethyl)-6-[4, 5, 6-trihydroxy-2-(hydroxymethyl) tetrahydropyran-3-yl] oxy-tetrahydropyran-3, 4, 5-triol was found to be best suited for further studies.Keywords: drug resistance, efflux pump, molecular docking, virtual screening
Procedia PDF Downloads 37011361 Evaluation of Achillea millefolium L. Biochemical Changes in Iran's Natural Habitat
Authors: Ghavamaldin Asadian, Aptin Rahnavard, Mariamalsadat Taghavi
Abstract:
Achillea millefolium L. is one of the most important medicinal plants with antioxidant compounds. The use of compounds derived from plants reduces the incidence of many chronic diseases. The purpose of this investigation is study of total phenolic content and antioxidant activity some of ecotypes yarrow grown in natural habitats in Iran. This experimental study was conducted in 2013 at the Islamic Azad University, Tonekabon Branch. After identifying the natural sites, we have attempted to harvest of aerial part and after drying in lab temperature, essential oil was extracted by steam distillation. In this research for evaluate the antioxidant properties was used of three method, DPPH, Antioxidant capacity ferro revival and phosphomolybdenum, that all mechanism is based on the electron donating. All ecotypes had antioxidant activity and ecotypes grown in Kandovan region were measured with the most total phenolic (89.5 mg GA/g dew) and flavonoid (20.4 µg/g dew) and the lowest in Saveh (71.3 mg GA/g dew, 17.4 µg/g dew). Variation of the antioxidant properties were significant (P≤0.01) in areas and were accounted Kandovan with highest value and the lowest in Save. As a result, yarrow essential oil grown in Kandovan in terms of amount of total phenolic, flavonoid and antioxidant property, it was determined the best natural habitat.Keywords: achillea millefolium L., antioxidant compounds, DPPH, total phenolic, flavonoid natural habitats
Procedia PDF Downloads 45611360 Effect of Magnesium Inoculation on the Microstructure and Mechanical Properties of a Spheroidal Cast Iron Knuckle: A Focus on the Steering Arm
Authors: Steven Mavhungu, Didier Nyembwe, Daniel Sekotlong
Abstract:
The steering knuckle is an integral component of the suspension and stability control system of modern vehicles. Good mechanical properties with an emphasis on the fatigue properties are essential for this component as it is subjected to cyclical load of significant magnitude during service. These properties are a function of the microstructure achieved in the component during the various manufacturing processes including forging and casting. The strut mount of the knuckle is required to meet specified microstructure and mechanical properties. However, in line with the recent trend of stringent quality requirements of cast components, Original Equipment Manufacturers (OEMs) have had to extend the specifications to other sections of the knuckle. This paper evaluates the effect of cored wire inoculation on the microstructure and mechanical properties of the steering arm of a typical spheroidal cast iron component. The investigation shows that the use of a cored wire having higher rare earth content formulation could possibly lead to a homogeneous matrix containing consistent graphite nodule morphology. However, this was found not to be the condition for better mechanical properties along the knuckle arm in line with required specifications. The findings in this paper contribute to a better understanding of steering knuckle properties to allow its production for safer automobile applications.Keywords: inoculation, magnesium cored wire, spheroidal graphie, steering knuckle
Procedia PDF Downloads 22411359 Mechanism of pH Sensitive Flocculation for Organic Load and Colour Reduction in Landfill Leachate
Authors: Brayan Daniel Riascos Arteaga, Carlos Costa Perez
Abstract:
Landfill leachate has an important fraction of humic substances, mainly humic acids (HAs), which often represent more than half value of COD, specially in liquids proceeded from composting processes of organic fraction of solid wastes. We propose in this article a new method of pH sensitive flocculation for COD and colour reduction in landfill leachate based on the chemical properties of HAs. Landfill leachate with a high content of humic acids can be efficiently treated by pH sensitive flocculation at pH 2.0, reducing COD value in 86.1% and colour in 84.7%. Mechanism of pH sensitive flocculation is based in protonation first of phenolic groups and later of carboxylic acid groups in the HAs molecules, resulting in a reduction of Zeta potential value. For pH over neutrality, carboxylic acid and phenolic groups are ionized and Zeta potential increases in absolute value, maintaining HAs in suspension as colloids and conducting flocculation to be obstructed. Ionized anionic groups (carboxylates) can interact electrostatically with cations abundant in leachate (site binding) aiding to maintain HAs in suspension. Simulation of this situation and ideal visualization of Zeta potential behavior is described in the paper and aggregation of molecules by H-bonds is proposed as the main step in separation of HAs from leachate and reduction of COD value in this complex liquid. CHNS analysis, FT-IR spectrometry and UV–VIS spectrophotometry show chemical elements content in the range of natural and commercial HAs, clear aromaticity and carboxylic acids and phenolic groups presence in the precipitate from landfill leachateKeywords: landfill leachate, humic acids, COD, chemical treatment, flocculation
Procedia PDF Downloads 7111358 Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste
Authors: Muzeyyen Balcikanli, Selma Ozaslan, Osman Sahin, Burak Uzal, Erdogan Ozbay
Abstract:
In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably.Keywords: nanoindenter, CaCO3, nano-hardness, nano-mechanical properties
Procedia PDF Downloads 28711357 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder
Authors: Rim Zgueb, Noureddine Yacoubi
Abstract:
The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity
Procedia PDF Downloads 35411356 Spectral Clustering from the Discrepancy View and Generalized Quasirandomness
Authors: Marianna Bolla
Abstract:
The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering.Keywords: generalized random graphs, multiway discrepancy, normalized modularity spectra, spectral clustering
Procedia PDF Downloads 19711355 Antimicrobial and Haemostatic Effect of Chitosan/Polyacrylic Acid Hybrid Membranes
Authors: F. A. Abdel-Mohdy, M. K. El-Bisi, A. Abou-Okeil, A. A. Sleem, S. El-Sabbagh, Kawther El-Shafei, Hoda S. El-Sayed, S. M. ElSawy
Abstract:
Chitosan/ polyacrylic acid membranes containing different amounts of Al2(SO4) and/or TiO2 were prepared. The prepared membranes were characterized by measuring mechanical properties, such as tensile strength and elongation at break, swelling properties, antimicrobial properties against gram-positive and gram-negative bacteria and blood clotting. The results obtained indicate that the presence of Al2(SO4) and TiO2 in the membrane formulations have an incremental effect on the antimicrobial properties and blood clotting in albino rate.Keywords: Chitosan, acrylic acid, antibacterial, blood clotting, membrane
Procedia PDF Downloads 48911354 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties
Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio
Abstract:
Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties
Procedia PDF Downloads 19511353 Safe Zone: A Framework for Detecting and Preventing Drones Misuse
Authors: AlHanoof A. Alharbi, Fatima M. Alamoudi, Razan A. Albrahim, Sarah F. Alharbi, Abdullah M Almuhaideb, Norah A. Almubairik, Abdulrahman Alharby, Naya M. Nagy
Abstract:
Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels.Keywords: detection, drone, jamming, prevention, privacy, RF, radar, UAV
Procedia PDF Downloads 21111352 Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath
Authors: N. Malatji, A. P. I. Popoola
Abstract:
Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required.Keywords: electrodeposition, nanocomposite coatings, corrosion, thermal stability, tribology
Procedia PDF Downloads 38911351 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites
Authors: Priyankar P. Deka, Sutanu Samanta
Abstract:
This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.Keywords: jute, mechanical characterization, natural fiber, rice husk
Procedia PDF Downloads 28511350 Screening the Growth Inhibition Mechanism of Sulfate-Reducing Bacteria by Chitosan/Lignosulfonate Nanocomposite in Seawater Media
Authors: K. Rasool
Abstract:
Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environmentally friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.Keywords: green biocides, chitosan/lignosulfonate nanocomposite, SRBs, toxicity
Procedia PDF Downloads 12011349 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites
Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi
Abstract:
The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures
Procedia PDF Downloads 26611348 Influence of Micro Fillers Content on the Mechanical Properties of Epoxy Composites
Authors: H. Unal, A. Mimaroglu, I. Ozsoy
Abstract:
In this study, the mechanical properties of micro filled epoxy composites were investigated. The matrix material is epoxy. Micro fillers are Al2O3 and TiO2 added in 10-30 wt% by weight ratio. Test samples were prepared using an open mould type die. Tensile, three point bending and hardness tests were carried out. The tensile strength, elastic modulus, elongation at break, flexural strength, flexural modulus and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the level of the mechanical properties of the epoxy composites is highly influenced by micro filler content.Keywords: composites, epoxy, fillers, mechanical properties
Procedia PDF Downloads 48611347 The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy
Authors: W. Ketren, J. Wannapeera, Z. Heishun, A. Ryuichi, K. Toshiteru, M. Kouichi, O. Hideaki
Abstract:
Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 oC with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching (3600-3100 cm-1) decreased slightly with increasing temperature in the range of 300-350 oC. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 oC. FTIR spectra in the carbonyl stretching region (1800-1600 cm-1) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250 oC and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 oC. From 300 to 350 oC, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process.Keywords: biomass waste, degradative solvent extraction, mechanism, upgrading
Procedia PDF Downloads 28511346 Thermoelastic Analysis of a Tube Subjected to Internal Heating with Temperature Dependent Material Properties
Authors: Yasemin Kaya, Ahmet N. Eraslan
Abstract:
In this study, the thermoelastic behavior of a long tube is studied by taking into account the temperature dependency of all mechanical and thermal properties. As the tube is heated slowly, an uncoupled solution procedure is adopted under free and radially constrained boundary conditions. The nonlinear heat conduction equation is solved by a finite element collocation procedure and the corresponding distributions of stress and strain are computed by shooting iterations. The computational model is verified in comparison to the analytical solution by shutting down the temperature dependency of physical properties. In the analysis, experimental data available in the literature is used to describe the coefficient of thermal expansion $\alpha$, the thermal conductivity $k$, the modulus of rigidity $G$, the yield strength $\sigma_{0}$, and the Poisson's ratio $\nu$ of Nickel. Results of the analysis are presented in comparison to those having constant physical properties. As a result of the calculations, the temperature dependency of the material properties should be taken into account at higher temperature ranges.Keywords: thermoelasticity, long tube, temperature-dependent properties, internal heating
Procedia PDF Downloads 61311345 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite
Authors: Hazleen Anuar, Nur Aimi Mohd Nasir
Abstract:
Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis
Procedia PDF Downloads 46411344 Exploring the Biochemical and Therapeutic Properties of Aged Garlic
Authors: Farhan Saeed
Abstract:
The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic.Keywords: aged garlic, nutritional values, bioactive properties, fermentation
Procedia PDF Downloads 17411343 Structural and Magnetic Properties of Undoped and Ni Doped CdZnS
Authors: Sabit Horoz, Ahmet Ekicibil, Omer Sahin, M. Akyol
Abstract:
In this study, CdZnS and Ni-doped CdZnS quantum dots(QDs) were prepared by the wet-chemical method at room temperature using mercaptoethanol as a capping agent. The structural and magnetic properties of the CdZnS and CdZnS doped with different concentrations of Ni QDs were examined by XRD and magnetic susceptibility measurements, respectively. The average particles size of cubic QDs obtained by full-width half maxima (FWHM) analysis, increases with increasing doping concentrations. The investigation of the magnetic properties showed that the Ni-doped samples exhibit signs of ferromagnetism, on the other hand, un-doped CdZnS is diamagnetic.Keywords: un-doped and Ni doped CdZnS Quantum Dots (QDs), co-precipitation method, structural and optical properties of QDs, diluted magnetic semiconductor materials (DMSMs)
Procedia PDF Downloads 29911342 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 44611341 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy
Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi
Abstract:
Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.Keywords: ball milling, compressive strengths, microstructure, porous titanium alloy
Procedia PDF Downloads 30011340 Design of a Robot with a Transformable Track System in Tackling Motion Barrier
Authors: Kai-Yi Cho, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Jhu-Wei Ji
Abstract:
This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design.Keywords: tracked robot, rescue robot, transformation mechanism, deformable track, hull design
Procedia PDF Downloads 33011339 Fabrication and Characterization of Ceramic Matrix Composite
Authors: Yahya Asanoglu, Celaletdin Ergun
Abstract:
Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.Keywords: CMC, PIP, precursor, quartz
Procedia PDF Downloads 16011338 Mechanical Properties of Self-Compacting Concrete with Three-Dimensional Steel Fibres
Authors: Jeffri Ramli, Brabha Nagaratnam, Keerthan Poologanathan, Wai Ming Cheung, Thadshajini Suntharalingham
Abstract:
Fiber-reinforced self-compacting concrete (FRSCC) combines the benefits of SCC of high flowability and randomly dispersed short fibres together in one single concrete. Fibres prevent brittle behaviour and improve several mechanical properties of SCC. In this paper, an experimental investigation of the effect of three-dimensional (3D) fibres on the mechanical properties of SCC has been conducted. Seven SCC mixtures, namely SCC with no fibres as a reference mix, and six 3D steel fibre reinforced SCC mixes were prepared. Two different sizes of 3D steel fibres with perimeters of 115 mm and 220 mm at different fibre contents of 1%, 2%, and 3% (by cement weight) were considered. The mechanical characteristics were obtained through compressive, splitting tensile, and flexural strength tests. The test results revealed that the addition of 3D fibres improves the mechanical properties of SCC.Keywords: self-compacting concrete, three-dimensional steel fibres, mechanical properties, compressive strength, splitting tensile strength, flexural strength
Procedia PDF Downloads 15311337 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators
Procedia PDF Downloads 20311336 Evaluation of Subsurface Drilling and Geo Mechanic Properties Based on Stratum Index Factor for Humanities Environment
Authors: Abdull Halim Abdul, Muhaimin Sulam
Abstract:
This paper is about a subsurface study of Taman Pudu Ulu, Cheras, Kuala Lumpur with emphasize of Geo mechanic properties based on stratum index factor in humanities environment. Subsurface drilling and seismic data were used to understand the subsurface condition of the study area such as the type and thickness of the strata. Borehole and soil samples were recovered Geo mechanic properties of the area by conducting number of experiments. Taman Pudu Ulu overlies the Kuala Lumpur Limestone formation that is known for its karstic features such as caves and cavities. Hence by knowing the Geo mechanic properties such as the normal strain and shear strain we can plan a safer and economics construction that is plan at the area in the future.Keywords: stratum, index factor, geo mechanic properties, humanities environment
Procedia PDF Downloads 49611335 Analysis of Flexural Behavior of Wood-Concrete Beams
Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui
Abstract:
This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.Keywords: wood waste ash, characterization, mechanical properties, bending tests
Procedia PDF Downloads 306