Search results for: layered material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6927

Search results for: layered material

6657 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 275
6656 Optical Breather in Phosphorene Monolayer

Authors: Guram Adamashvili

Abstract:

Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.

Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons

Procedia PDF Downloads 149
6655 Feels Like Home: A Study Of The Role Of Material Culture In Older Adults' Transition To A Retirement Village

Authors: Sharon Ganzer

Abstract:

Older adults want choices about where they ‘age-in-place’ and express the desire to remain in their home for as long as possible because it maintains feelings of independence and autonomy, perpetuates a sense of identity, enable people to have space for their belongings and supports connections and social engagement. When circumstances change, and alternative living arrangements are required, more and more older adults are considering a transition to a retirement village – the liminal space between home and residential care. This qualitative study explores the lived experience of older adults who relocate to a retirement village in Queensland, Australia, and the role that material culture plays in this process.

Keywords: material culture, social gerontology, concepts of home, retirement villages

Procedia PDF Downloads 82
6654 Architectural Knowledge Systems Related to Use of Terracotta in Bengal

Authors: Nandini Mukhopadhyay

Abstract:

The prominence of terracotta as a building material in Bengal is well justified by its geographical location. The architectural knowledge system associated with terracotta can be comprehended in the typology of the built structures as they act as texts to interpret the knowledge. The history of Bengal has witnessed the influence of several rulers in developing the architectural vocabulary of the region. This metamorphosis of the architectural knowledge systems in the region includes the Bhakti movement, the Islamic influence, and the British rule, which led to the evolution of the use of terracotta from decorative elements to structural elements in the present-day context. This paper intends to develop an understanding of terracotta as a building material, its use in a built structure, the common problems associated with terracotta construction, and the techniques of maintenance, repair, and conservation. This paper also explores the size, shape, and geometry of the material and its varied use in temples, mosques in the region. It also takes into note that the use of terracotta was concentrated majorly to religious structures and not in the settlements of the common people. And the architectural style of temples and mosques of Bengal is hugely influenced by the houses of the common.

Keywords: terracotta, material, knowledge system, conservation

Procedia PDF Downloads 149
6653 Production of 100 Kg/Day Zeolite a Using Locally Fabricated Crystallizer from Nigeria Ahoko Kaolin

Authors: M. S. Haruna, A. R. Agava, N. J. Sani, A. S. Kovo

Abstract:

The recent effort for cheaper raw material for the production of Zeolite A that is economically beneficial necessitated the reason for this work. The studies explore the use of locally fabricated crystallizer for the production of zeolite A using Nigeria Ahoko Kaolin as the main raw material. To achieve this intention, a systematic chemical engineering approach for the design of processes was adopted. Firstly a unique simplified flowsheet was developed, and then material and energy balance was conducted and finally followed by a detail design of the crystallizer. The summary of the result of the design showed that the optimum design parameters of 0.45 m and 1.125 were obtained for the diameter and height, respectively. The fabricated crystallizer was successfully tested for the production of Zeolite A, which is the expectation of this work.

Keywords: Zeolite A, design, crystallizer, Ahoko, Kaolin

Procedia PDF Downloads 90
6652 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation

Authors: G. B. Lim, C. H. Jeon, K. H. Jung

Abstract:

General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.

Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS

Procedia PDF Downloads 492
6651 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 424
6650 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 305
6649 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 402
6648 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48

Authors: A. Mekroud, A. Khemis, M. S. Mecibah

Abstract:

The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.

Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction

Procedia PDF Downloads 420
6647 Development of Multimedia Learning Application for Mastery Learning Style: A Graduated Difficulty Strategy

Authors: Nur Azlina Mohamed Mokmin, Mona Masood

Abstract:

Guided by the theory of learning style, this study is based on the development of a multimedia learning application for students with mastery learning style. The learning material was developed by applying a graduated difficulty learning strategy. Algebraic fraction was chosen as the learning topic for this application. The effectiveness of this application in helping students learn is measured by giving a pre- and post-test. The result shows that students who learn using the learning material that matches their preferred learning style performs better than the students with a non-personalized learning material.

Keywords: algebraic fractions, graduated difficulty, mastery learning style, multimedia

Procedia PDF Downloads 513
6646 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 87
6645 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images

Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel

Abstract:

Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.

Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization

Procedia PDF Downloads 39
6644 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler

Authors: Srikanth Korla, Mahesh Sharnangat

Abstract:

Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.

Keywords: composite materials, moisture test, filler material, natural fibre composites

Procedia PDF Downloads 205
6643 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 365
6642 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material

Authors: Nadia Sid, Alan Taylor, Marion Bourebrab

Abstract:

The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).

Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material

Procedia PDF Downloads 237
6641 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 221
6640 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 165
6639 Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material

Authors: Rukiye Ertan

Abstract:

In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion.

Keywords: brake pad, friction, wear, abrasives

Procedia PDF Downloads 440
6638 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium

Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya

Abstract:

Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).

Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption

Procedia PDF Downloads 142
6637 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESAR-LCPC

Procedia PDF Downloads 311
6636 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 308
6635 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 613
6634 Simulation and Experimental of Solid Mixing of Free Flowing Material Using Solid Works in V-Blender

Authors: Amina Bouhaouche, Zineb Kaoua, Lila Lahreche, Sid Ali Kaoua, Kamel Daoud

Abstract:

The objective of this study is to present a novel approach for analyzing the solid dispersion and mixing performance by a numerical simulation method using solid works software of a monodisperse particles for a large span of time reached 20 minutes. To assure the viability of a numerical simulation, an experimental study of a binary mixture of monodiperse particles taken as free flowing material in a V blender was developed on the basis of relative standard deviation curves, and the arrangement of the particles in the vessel. The experimental results were discussed and compared to the numerical simulation results.

Keywords: non-cohesive material, solid mixing, solid works, v-blender

Procedia PDF Downloads 390
6633 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material

Authors: Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.

Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor

Procedia PDF Downloads 190
6632 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent

Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen

Abstract:

Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.

Keywords: adsorption, nanoporous silicon, ore solution, scandium

Procedia PDF Downloads 146
6631 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
6630 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)

Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz

Abstract:

Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.

Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites

Procedia PDF Downloads 348
6629 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 69
6628 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro-scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the microchannels and to calculate the surface finish and material removal rate of microchannels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of a pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: microchannels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), surface finish

Procedia PDF Downloads 498