Search results for: goal question metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5528

Search results for: goal question metrics

5258 A Combined AHP-GP Model for Selecting Knowledge Management Tool

Authors: Ahmad Sarfaraz, Raiyad Herwies

Abstract:

In this paper, a multi-criteria decision making analysis is used to help any organization selects the best KM tool that fits and serves its needs. The AHP model is used based on a previous study to highlight and identify the main criteria and sub-criteria that are incorporated in the selection process. Different KM tools alternatives with different criteria are compared and weighted accurately to be incorporated in the GP model. The main goal is to combine the GP model with the AHP model to ensure that selecting the KM tool considers the resource constraints. Two important issues are discussed in this paper: how different factors could be taken into consideration in forming the AHP model, and how to incorporate the AHP results into the GP model for better results.

Keywords: knowledge management, analytical hierarchy process, goal programming, multi-criteria decision making

Procedia PDF Downloads 383
5257 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 62
5256 Eco-Cities in Challenging Environments: Pollution As A Polylemma in The Uae

Authors: Shaima A. Al Mansoori

Abstract:

Eco-cities have become part of the broader and universal discourse and embrace of sustainable communities. Given the ideals and ‘potential’ benefits of eco-cities for people, the environment and prosperity, hardly can an argument be made against the desirability of eco-cities. Yet, this paper posits that it is necessary for urban scholars, technocrats and policy makers to engage in discussions of the pragmatism of implementing the ideals of eco-cities, for example, from the political, budgetary, cultural and other dimensions. In the context of such discourse, this paper examines the feasibility of one of the cardinal principles and goals of eco-cities, which is the reduction or elimination of pollution through various creative and innovative initiatives, in the UAE. This paper contends and argues that, laudable and desirable as this goal is, it is a polylemma and, therefore, overly ambitious and practically unattainable in the UAE. The paper uses the mixed method research strategy, in which data is sourced from secondary and general sources through desktop research, from public records in governmental agencies, and from the conceptual academic and professional literature. Information from these sources will be used, first, to define and review pollution as a concept and multifaceted phenomenon with multidimensional impacts. Second, the paper will use society’s five goal clusters as a framework to identify key causes and impacts of pollution in the UAE. Third, the paper will identify and analyze specific public policies, programs and projects that make pollution in the UAE a polylemma. Fourth, the paper will argue that the phenomenal rates of population increase, urbanization, economic growth, consumerism and development in the UAE make pollution an inevitable product and burden that society must live with. This ‘reality’ makes the goal and desire of pollution-free cities pursuable but unattainable. The paper will conclude by identifying and advocating creative and innovative initiatives that can be taken by the various stakeholders in the country to reduce and mitigate pollution in the short- and long-term.

Keywords: goal clusters, pollution, polylemma, sustainable communities

Procedia PDF Downloads 385
5255 Impact of Firm Location and Organizational Structure on Receipt and Effectiveness of Social Assistance

Authors: Nalanda Matia, Julia Zhao, Amber Jaycocks, Divya Sinha

Abstract:

Social assistance programs for businesses are intended to improve their survival and growth in the face of catastrophic events like the COVID-19 pandemic. However, that goal remains unfulfilled when the mostwantingbusinesses fail to participate in such programs. Reasons for non-participation can include lack of information, inability to cope with applications and program compliance, as well as some programs’ non-entitlement status. Some of these factors may be associated with the organizational and locational characteristics of these businesses. This research investigates these organizational and locational factorsthat determine receipt and effectiveness of social assistance among the firms that receive it. of A sample of firms from the universe of 3 rounds of Small Business Administration backed Paycheck Protection Program recipient and similarly profiled non recipient businesses are used to analyze this question. Initial results show firm organizational factors like size and spatial factors like broadband coverage at firm location impact application for and subsequent receipt of assistance for digitally administered programs. Further, Line of business and wage structure of recipients’ impact effectiveness of the assistance dollars.

Keywords: public economics, economics of social assistance, firm organizational structure, survival analysis

Procedia PDF Downloads 167
5254 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms: Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. The existence of influential users who have developed a reputation for their knowledge and experience of specific topics is a major factor contributing to this impact. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is related to the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: Twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 117
5253 Prioritization in Modern Portfolio Management - An Action Design Research Approach to Method Development for Scaled Agility

Authors: Jan-Philipp Schiele, Karsten Schlinkmeier

Abstract:

Allocation of scarce resources is a core process of traditional project portfolio management. However, with the popularity of agile methodology, established concepts and methods of portfolio management are reaching their limits and need to be adapted. Consequently, the question arises of how the process of resource allocation can be managed appropriately in scaled agile environments. The prevailing framework SAFe offers Weightest Shortest Job First (WSJF) as a prioritization technique, butestablished companies are still looking for methodical adaptions to apply WSJF for prioritization in portfolios in a more goal-oriented way and aligned for their needs in practice. In this paper, the relevant problem of prioritization in portfolios is conceptualized from the perspective of coordination and related mechanisms to support resource allocation. Further, an Action Design Research (ADR) project with case studies in a finance company is outlined to develop a practically applicable yet scientifically sound prioritization method based on coordination theory. The ADR project will be flanked by consortium research with various practitioners from the financial and insurance industry. Preliminary design requirements indicate that the use of a feedback loop leads to better team and executive level coordination in the prioritization process.

Keywords: scaled agility, portfolio management, prioritization, business-IT alignment

Procedia PDF Downloads 195
5252 When Religion is Meaningful and When Religion is Detrimental

Authors: Tennyson Samraj

Abstract:

The intent of this paper is threefold: (1) to propose the Epicurean tenet that beliefs associated with God are to be detached from the transcendent God, as the basis to end religious conflicts; (2) to project John Hick’s advice that no one has monopoly over religious claims, as the basis for religious tolerance and (3) to present the common sense approach to respect religion without disrespecting science. Religious claims create societal tension on two matters: conflict between believers and conflict with the sciences. Anyone interested in the two fundamental questions related to consciousness and cosmology as to how and why the universe exists will have to deal with science and religion. However, while science addresses the question of how the universe came into existence and how it works, religion addresses the question of why the universe exists. If religion is a quest to understand why the universe exists, then we must address the question as to when religion is considered meaningful and when is it considered detrimental. Is there a relationship between why we choose to live and why the universe exists? Science and Religion are partners in defining our life in the context of the universe. Science without Religion limits itself to knowing ‘how’ the universe came into existence without questioning ‘why’; Religion without Science limits itself of knowing ‘why’ the universe exists without knowing ‘how.’ Is it possible to detach beliefs about God from God? When religious claims are understood in the context of the questions that necessitates the answers, religious claims can be understood as being separate from the transcendent God. This paper purports that this Epicurean tenet provides the impetus to address the questions that necessitate religious claims. This helps us to explain the relevance of why we believe in what we believe; define the relationship between the self, soul and the sacred; and establish the connection between this life and the after-life in the context of life-beyond-this-planet.

Keywords: religion, epicurus, John Hick, relevance of religion

Procedia PDF Downloads 547
5251 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 174
5250 Thomas Kuhn, the Accidental Theologian: An Argument for the Similarity of Science and Religion

Authors: Dominic McGann

Abstract:

Applying Kuhn’s model of paradigm shifts in science to cases of doctrinal change in religion has been a common area of study in recent years. Few authors, however, have sought an explanation for the ease with which this model of theory change in science can be applied to cases of religious change. In order to provide such an explanation of this analytic phenomenon, this paper aims to answer one central question: Why is it that a theory that was intended to be used in an analysis of the history of science can be applied to something as disparate as the doctrinal history of religion with little to no modification? By way of answering this question, this paper begins with an explanation of Kuhn’s model and its applications in the field of religious studies. Following this, Massa’s recently proposed explanation for this phenomenon, and its notable flaws will be explained by way of framing the central proposal of this article, that the operative parts of scientific and religious changes function on the same fundamental concept of changes in understanding. Focusing its argument on this key concept, this paper seeks to illustrate its operation in cases of religious conversion and in Kuhn’s notion of the incommensurability of different scientific paradigms. The conjecture of this paper is that just as a Pagan-turned-Christian ceases to hear Thor’s hammer when they hear a clap of thunder, so too does a Ptolemaic-turned-Copernican-astronomer cease to see the Sun orbiting the Earth when they view a sunrise. In both cases, the agent in question has undergone a similar change in universal understanding, which provides us with a fundamental connection between changes in religion and changes in science. Following an exploration of this connection, this paper will consider the implications that such a connection has for the concept of the division between religion and science. This will, in turn, lead to the conclusion that religion and science are more alike than they are opposed with regards to the fundamental notion of understanding, thereby providing an answer to our central question. The major finding of this paper is that Kuhn’s model can be applied to religious cases so easily because changes in science and changes in religion operate on the same type of change in understanding. Therefore, in summary, science and religion share a crucial similarity and are not as disparate as they first appear.

Keywords: Thomas Kuhn, science and religion, paradigm shifts, incommensurability, insight and understanding, philosophy of science, philosophy of religion

Procedia PDF Downloads 169
5249 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 155
5248 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 47
5247 Action Research: The Goal Setting Intervention Promotes Students' Academic Achievement of the Bachelors of Early Childhood Education Program During the COVID-19 Pandemic

Authors: Mashaal Hooda

Abstract:

The rationale for conducting this action research was to increase students' Academic Achievement (AA) contexts of studying/researching by employing the Goal Setting intervention (GS). The purposive sample consisted of 10 female undergraduate students at a university in Dubai. The intervention was introduced through workshop classes conducted online. The pre-intervention consisted of discussions concentrating on participants' research contexts amidst a pandemic. The GS moderators were implemented in the class, followed by scaffolding and mentoring interactions and self-reflective accounts of students' actions and feelings of using the intervention to better plan and structure their dissertation tasks. The research incorporated a Mixed Methods Methodology (MMM). Quantitative data collection took place through surveys, while qualitative data were collected using semi-structured interviews. Triangulation of the emergent themes showed a positive increase in students achievable GS, self-regulatory study skills, feedback-seeking behaviours, research organisation and synthesis, self-reflection and Academic Resilient (AR) attitudes amalgamate to enhance students' AA outcomes. Though, students' intrinsic motivational levels to study and research observed minor changes only. Nonetheless, the pebble in the shoe was removed as students AA contexts improved in undertaking better actionable steps for their research. Therefore, the GS intervention enabled students to set, balance, and achieve academic goals while catering to their academic anxieties, mental health concerns, and adaptability to the e-learning platforms amidst the COVID-19 pandemic. Despite the wide-scale changes the pandemic brought to the teaching and learning communities, the GS intervention served as a targeted intervention to help students maintain their achievement contexts in a goal-oriented way.

Keywords: academic achievement, acadeic resilience, COVID-19, goal setting

Procedia PDF Downloads 144
5246 Measurement of Innovation Performance

Authors: M. Chobotová, Ž. Rylková

Abstract:

Time full of changes which is associated with globalization, tougher competition, changes in the structures of markets and economic downturn, that all force companies to think about their competitive advantages. These changes can bring the company a competitive advantage and that can help improve competitive position in the market. Policy of the European Union is focused on the fast growing innovative companies which quickly respond to market demands and consequently increase its competitiveness. To meet those objectives companies need the right conditions and support of their state.

Keywords: innovation, performance, measurements metrics, indices

Procedia PDF Downloads 374
5245 Implementing a Hospitalist Co-Management Service in Orthopaedic Surgery

Authors: Diane Ghanem, Whitney Kagabo, Rebecca Engels, Uma Srikumaran, Babar Shafiq

Abstract:

Hospitalist co-management of orthopaedic surgery patients is a growing trend across the country. It was created as a collaborative effort to provide overarching care to patients with the goal of improving their postoperative care and decreasing in-hospital medical complications. The aim of this project is to provide a guide for implementing and optimizing a hospitalist co-management service in orthopaedic surgery. Key leaders from the hospitalist team, orthopaedic team and quality, safety and service team were identified. Multiple meetings were convened to discuss the comanagement service and determine the necessary building blocks behind an efficient and well-designed co-management framework. After meticulous deliberation, a consensus was reached on the final service agreement and a written guide was drafted. Fundamental features of the service include the identification of service stakeholders and leaders, frequent consensus meetings, a well-defined framework, with goals, program metrics and unified commands, and a regular satisfaction assessment to update and improve the program. Identified pearls for co-managing orthopaedic surgery patients are standardization, timing, adequate patient selection, and two-way feedback between hospitalists and orthopaedic surgeons to optimize the protocols. Developing a service agreement is a constant work in progress, with meetings, discussions, revisions, and multiple piloting attempts before implementation. It is a partnership created to provide hospitals with a streamlined admission process where at-risk patients are identified early, and patient care is optimized regardless of the number or nature of medical comorbidities. A wellestablished hospitalist co-management service can increase patient care quality and safety, as well as health care value.

Keywords: co-management, hospitalist co-management, implementation, orthopaedic surgery, quality improvement

Procedia PDF Downloads 88
5244 The Impact of Riparian Alien Plant Removal on Aquatic Invertebrate Communities in the Upper Reaches of Luvuvhu River Catchment, Limpopo Province

Authors: Rifilwe Victor Modiba, Stefan Hendric Foord

Abstract:

Alien invasive plants (IAP’s) have considerable negative impacts on freshwater habitats and South Africa has implemented an innovative Work for Water (WfW) programme for the systematic removal of these plants aimed at, amongst other objectives, restoring biodiversity and ecosystem services in these threatened habitats. These restoration processes are expensive and have to be evidence-based. In this study in-stream macroinvertebrate and adult Odonata assemblages were used as indicators of restoration success by quantifying the response of biodiversity metrics for these two groups to the removal of IAP’s in a strategic water resource of South Africa that is extensively invaded by invasive alien plants (IAP’s). The study consisted of a replicated design that included 45 sampling units, viz. 15 invaded, 15 uninvaded and 15 cleared sites stratified across the upper reaches of six sub-catchments of the Luvuvhu river catchment, Limpopo Province. Cleared sites were only considered if they received at least two WfW treatments in the last 3 years. The Benthic macroinvertebrate and adult Odonate assemblages in each of these sampling were surveyed from between November and March, 2013/2014 and 2014/2015 respectively. Generalized Linear Models (GLM) with a log link function and Poisson error distribution were done for metrics (invaded, cleared, and uninvaded) whose residuals were not normally distributed or had unequal variance and for abundance. RDA was done for EPTO genera (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and adult Odonata species abundance. GLM was done to for the abundance of Genera and Odonates that had the association with the RDA environmental factors. Sixty four benthic macroinvertebrate families, 57 EPTO genera, and 45 adult Odonata species were recorded across all 45 sampling units. There was no significant difference between the SASS5 total score, ASPT, and family richness of the three invasion classes. Although clearing only had a weak positive effect on the adult Odonate species richness it had a positive impact on DBI scores. These differences were mainly the result of significantly larger DBI scores in the cleared sites as compared to the invaded sites. Results suggest that water quality is positively impacted by repeated clearing pointing to the importance of follow up procedures after initial clearing. Adult Odonate diversity as measured by richness, endemicity, threat and distribution respond positively to all forms of the clearing. The clearing had a significant impact on Odonate assemblage structure but did not affect EPTO structure. Variation partitioning showed that 21.8% of the variation in EPTO assemblage can be explained by spatial and environmental variables, 16% of the variation in Odonate structure was explained by spatial and environmental variables. The response of the diversity metrics to clearing increased in significance at finer taxonomic resolutions, particularly of adult Odonates whose metrics significantly improved with clearing and whose structure responded to both invasion and clearing. The study recommends the use of DBI for surveying river health when hydraulic biotopes are poor.

Keywords: DBI, evidence-based conservation, EPTO, macroinvetebrates

Procedia PDF Downloads 185
5243 De-Commoditisation of Food: How Organic Farmers from the Madrid Region Reconnect Products and Places through Web Marketing

Authors: Salvatore Pinna

Abstract:

The growth of organic farming practices in the last few decades is continuing to stimulate the international debate about this alternative food market. As a part of a PhD project research about embeddedness in Alternative Food Networks (AFNs), this paper focuses on the promotional aspects of organic farms websites from the Madrid region. As a theoretical tool, some knowledge categories drawn on the geographic studies literature are used to classify the many ideas expressed in the web pages. By analysing texts and pictures of 30 websites, the study aims to question how and to what extent actors from organic world communicate to the potential customers their personal beliefs about farming practices, products qualities, and ecological and social benefits. Moreover, the paper raises the question of whether organic farming laws and regulations lack of completeness about the social and cultural aspects of food.

Keywords: alternative food networks, de-commoditisation, organic farming, madrid, reconnection of food

Procedia PDF Downloads 350
5242 Positioning of Lesbian and Gay Workers within the Corporate Sector in Sri Lanka: The Case of Residents in the Colombo District

Authors: Pramoda Karunarathna, Hemamalie Gunatilaka

Abstract:

This study is based on experiences of Sri Lankan lesbian and gay workers’ career in the corporate sector, which include both manufacturing and service sectors. The study has started with the intention of shedding light on a grey area to observe the negative effects on lesbian and gay workers and their experiences while they are employed in the Sri Lankan corporate sector. In order to understand the experiences of lesbian and gay workers while they are at work within the corporate sector, the study seeks to address four questions. First research question is about the challenges faced by lesbian and gay workers while they are at work, and the second research question looks at their career patterns. Third research question seeks to address the behavior at work, and the fourth research question looks at the influence of class, religion, and cultural aspects on the career of lesbian and gay workers. Methodologically, the research was based on semi-structured interviews with nine participants (five gay men and four lesbian women) having work experience in the corporate sector and residing in Colombo, the capital city of Sri Lanka. The research found that the participants have gone through the process of developing sexual identity; gay men possess more feminine characteristics, while lesbian women possess more masculine characteristics. Further, their identity gets revealed in different ways, such as through the curriculum vitae, at the interviews, through the attire and behavior, and with the use of social media. The study also found that lesbian and gay workers experience discrimination due to violation of hierarchical power difference by other employees and marginalization, verbal and nonverbal abuse by other men at work are common experiences. Another finding is that lesbian and gay workers adopt strategies for survival at work, and they prefer the NGO sector to the corporate sector. In contrast, even within the corporate sector, advertising is preferred by lesbian and gay workers. Some of the Sri Lankan corporate sector organizations, especially multinational organizations, have initiated diversity training, and it might lead to making these organisations lesbian and gay-friendly workplaces in the future. It is also found that nearly 44 percent of the participants do not have a religion, and it is due to the rejection of deviant behaviours by most of the religions. In conclusion, lesbian and gay workers experience discrimination at work in the Sri Lankan corporate sector with an exception to the companies relating to advertising and non-governmental organisations is the sector that these workers prefer the most.

Keywords: lesbian workers, gay workers, Sri Lankan corporate sector, discrimination

Procedia PDF Downloads 142
5241 'Enjoying the Czech Traditions with All Sences!': Tourism Product Promotion

Authors: Tomas Seidl

Abstract:

'Enjoy the Czech traditions with all sences!' is the main communication headline of one of the major current marketing project representing the intangible cultural heritage of the Czech Republic to its visitors. The project CZ.1.06/4.1.00/12.08915 and CZ.1.06/4.1.00/12.08916 which is solved in the period 2013-2015 is co-financed form the EU financial sources from the Integrated Operational Programme. The primary goal of the project was to analyze the dislocation and potential of the intangible cultural heritage in the Czech Republic. Further goal was to prepare a useful regionalization. An as solution based on the outcomes the creative and media strategy was created and prepared. The processor – CzechTourism expect the following web and mobile application development and successful marketing campaign in 2015.

Keywords: traditions, intangible cultural heritage, Czech Republic, CzechTourism, digital performance

Procedia PDF Downloads 368
5240 Problems in Establishing Alliances to Comply with SDG 17 in the Successful Execution of Environmental Conservation Projects

Authors: Elena Bulmer

Abstract:

The research for this study has found that the formation of alliances for the successful revitalization of the global partnership for sustainable development, as defined by UN Sustainable Development Goal 17, entails considerable difficulty. This study uses for its empirical work marine environmental conservation projects and analyses the potential involvement of nonhuman actors as primordial stakeholders in these types of projects. The idea is to extend the scope of SDG 17 for it to also consider nonhuman subjects in order for it to better achieve its goal. The results of this study may be extrapolated to the business and management fields, which depend on natural resources for the development of their products. In the same way, in these areas, natural resources as nonhuman actors are not present in the stakeholder maps of these projects. Environmental Conservation projects are thus especially interesting to study with regards to their stakeholder context and have been used as the experimental setting for the empirical work of this study. The primordial stakeholders of these projects are not social objects and therefore go beyond the present limits of present stakeholder theory. The study that has been used to analyse this concept is a marine conservation project based in Spain, and to shed light in potential extending the role of the 17th Sustainable Development Goal to include nonhuman beings to be able to better achieve the rest of the SDGs, in this case, SDG 14 whose aim is to promote the conservation and sustainability of the world´s oceans.

Keywords: SDG 17, sustainability, stakeholder management, environmental conservation projects

Procedia PDF Downloads 214
5239 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 86
5238 Analysis of Tools for Revitalization and Rehabilitation of Brownfields

Authors: Jiří Kugl

Abstract:

Typology and specific opportunities of brownfield revitalization are already largely described. Challenges and opportunities that brownfields represent have been adequately studied and presented, as well as specific ways in which these areas can be used or how they are used abroad. In other words, the questions why (revitalize brownfields) and what (we should do with them) are satisfactorily answered, but the question how (we can work with them) is not. This work will focus on answering this question, which will deal with tools that enable the revitalization and rehabilitation projects in the area. Tools can be divided, for example in terms of spatial planning and urban design, from an environmental perspective, from the perspective of cultural heritage protection and from the perspective of investment opportunities. The result is that the issue of brownfields is handled by numerous institutions and instruments. The aim of this paper is to identify, classify and analyze these instruments. Paper will study instruments from other countries with long-term experience with this issue (eg. France, Great Britain, USA, Germany, Denmark, Czech Republic) and analyse their contribution and the feasibility of their implementation in other countries.

Keywords: brownfields, revitalization, rehabilitation, tools, urban planning

Procedia PDF Downloads 239
5237 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 143
5236 Strategic Fit between Higher Education Funding and the National Development Goals in Kazakhstan

Authors: Ali Ait Si Mhamed, Rita Kasa, Hans Vossensteyn

Abstract:

Kazakhstan is the eight largest country on the globe, in terms of the territory, it is rich in natural resources and is developing dynamically. Kazakhstan strives to become one of the top 30 global economies by 2050. This goal preconditions intensive reforms in all sectors of economy, including higher education. This paper focuses on the higher education funding reforms that take place in Kazakhstan and their alignment with the strategic goals of national development. Currently, the government funds higher education costs for only a limited number of students while the majority of students pay full cost covering tuition fees. Only students with high examination scores at the end of the secondary education are eligible to be admitted to publically funded study places in higher education. While this merit-based higher education funding model is overall well-received in the country, there is also a discourse calling to change the existing approach of higher education funding. This paper draws on interviews with national policy makers and leadership at institutions of higher education in Kazakhstan collected during 2016. It seeks to answer a question about how well the current higher education funding mechanism is aligned with the strategic development goals in higher education. The paper discusses how stakeholders see the fit between the current higher education funding mechanism and the ability of higher education institutions to achieve the aims of national strategic development.

Keywords: higher education reform, higher education funding, higher education policy, Kazakhstan

Procedia PDF Downloads 287
5235 Impact of Wind Energy on Cost and Balancing Reserves

Authors: Anil Khanal, Ali Osareh, Gary Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper, the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here, we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study shows how the increases in wind generation will affect power system economics.

Keywords: wind power generation, wind power penetration, cost analysis, economic dispatch (ED) model

Procedia PDF Downloads 564
5234 The Influence of Wasta on Organizational Practices in Kuwait

Authors: Abrar Al-Enzi

Abstract:

Despite being frequently used everyday in the Arab World, Wasta, which is seen as a type of social capital, has received little attention from previous scholars, even in the Middle East. In simple words, Wasta basically means granting deserved or undeserved privileges to others through personal contacts. This paper suggests that Wasta is an important determinant of how some employees get recruited and turn to Wasta for privileges and favors in organizations. It is said, that Wasta accelerates career advancement and other work practices for employees, whether they deserve it or even are suitable for it or not. The overall goal of this paper is to see how Wasta influences human resource management practices by viewing the history of Wasta, the importance of using it, and how it affects employees as well as organizations in terms of recruitment and work practices. Accordingly, the question that will be addressed is: Does Wasta influence human resource management, knowledge sharing and innovation in Kuwait, which in turn affects employees’ commitment within organizations? Therefore, a mixed method sequential exploratory research design will be used to explore the research topic through initial exploratory interviews, paper-based and online surveys (Quantitative method) and semi-structured interviews (Qualitative method). The reason behind such a choice is because both qualitative and quantitative methods complement each other when combined by providing a clearer picture of the topic.

Keywords: human resource management practices, Kuwait, social capital, Wasta

Procedia PDF Downloads 206
5233 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. A most important factor contributing to this effect is the existence of influential users, who have developed a reputation for their awareness and experience on specific subjects. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is based on the pioneering work of Katz and Lazarsfeld (1959), who created the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 136
5232 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 296
5231 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 21
5230 The Executive Functioning Profile of Children and Adolescents with a Diagnosis of OCD: A Systematic Review and Meta-Analysis

Authors: Parker Townes, Aisouda Savadlou, Shoshana Weiss, Marina Jarenova, Suzzane Ferris, Dan Devoe, Russel Schachar, Scott Patten, Tomas Lange, Marlena Colasanto, Holly McGinn, Paul Arnold

Abstract:

Some research suggests obsessive-compulsive disorder (OCD) is associated with impaired executive functioning: higher-level mental processes involved in carrying out tasks and solving problems. Relevant literature was identified systematically through online databases. Meta-analyses were conducted for task performance metrics reported by at least two articles. Results were synthesized by the executive functioning domain measured through each performance metric. Heterogeneous literature was identified, typically involving few studies using consistent measures. From 29 included studies, analyses were conducted on 33 performance metrics from 12 tasks. Results suggest moderate associations of working memory (two out of five tasks presented significant findings), planning (one out of two tasks presented significant findings), and visuospatial abilities (one out of two tasks presented significant findings) with OCD in youth. There was inadequate literature or contradictory findings for other executive functioning domains. These findings suggest working memory, planning, and visuospatial abilities are impaired in pediatric OCD, with mixed results. More work is needed to identify the effect of age and sex on these results. Acknowledgment: This work was supported by the Alberta Innovates Translational Health Chair in Child and Youth Mental Health. The funders had no role in the design, conducting, writing, or decision to submit this article for publication.

Keywords: obsessive-compulsive disorder, neurocognition, executive functioning, adolescents, children

Procedia PDF Downloads 99
5229 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 93