Search results for: forecasting methodologies review
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5990

Search results for: forecasting methodologies review

5720 New Approach for Melanoma Skin Cancer Controled Releasing Drugs for Neutron Capture Therapy: A Review

Authors: Lucas Bernardes Naves, Luis Almeida

Abstract:

The paper includes a review concerning the use of some composites including poly(lactide-co-glycolide) (PGLA), zeolite and Gadopentetic acid (Gd-DTPA) loaded chitosan nanoparticles (Gd-nanoCPs) in order to establish a new alternative for the treatment of Melanoma Skin Cancer. The main goal of this paper it to make a review of what scientist have done in the last few years, as well as to propose a less invasive therapy for skin cancer, by using Hydrocolloid, based on PLGA coated with Gd-nanoCPs for Neutron Capture Therapy.

Keywords: cancer therapy, dressing polymers, melanoma, wound healing

Procedia PDF Downloads 490
5719 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry

Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell

Abstract:

The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.

Keywords: software evaluation, end user programs, soil pipeline analysis, software selection

Procedia PDF Downloads 191
5718 Scoping Review of the Barriers and Facilitators to Enabling Scholarly Activity within Canadian Schools of Nursing

Authors: Christa Siminiuk, Morgan Yates, Paramita Banerjee, Alison Curtis, Lysbeth Cuanda

Abstract:

This review looked at current evidence regarding barriers and facilitators to nursing scholarship within the content of Canadian Schools of Nursing. Nursing scholarship mainly referred to research, though other activities as described by Boyer’s Model were also discussed. This scoping review was done to assist the Langara School of Nursing in developing an evidenced-based plan to enhance scholarly work among its faculty members. The scoping review identified 10 articles which detailed barriers and facilitators in both Canadian and international contexts. Barriers and facilitators in these articles were extracted and they were also critically appraised. The identified barriers and facilitators fell into three main areas; personal attributes, facility factors and system challenges. The three area will be discussed further in the presentation as well as strategies identified to overcome these barriers.

Keywords: barriers, facilitators, nursing education, scholarship

Procedia PDF Downloads 227
5717 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 217
5716 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence

Authors: Eunjung Lee

Abstract:

This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.

Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining

Procedia PDF Downloads 47
5715 Digital Twin Smart Hospital: A Guide for Implementation and Improvements

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.

Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology

Procedia PDF Downloads 51
5714 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting

Procedia PDF Downloads 269
5713 A Systematic Review for Promotion of Sustainable Fisheries and Aquaculture: A Global Perspective

Authors: Soma Gholamveisy, Vahid Mirghavameddin

Abstract:

Aquaculture activities face wide environmental, social, and economic problems today. To deal with these problems, the aquaculture business, which is already a highly significant agricultural activity, is influenced by sustainability, which can assure the rural community's safety and food health with minimal environmental damage. The objective of this study's systematic review of the literature (SLR) is to look into the use of global perspective Promotion of Sustainable Fisheries and Aquaculture. SLR aims to identify the goals of a promotional system, also one of its main components. This research seeks to empower, increase economic productivity, facilitate, pay more attention to the sustainability of the environment and inform the audience in this regard. A method used to assess hypotheses, condense the results of past studies or verify the consistency of studies. It presents a succinct analysis of original research using an unambiguous and verifiable approach. A thorough repository with a vast array of papers and effective exploration methods are frequently utilized in a systematic literature review, enabling the application of advanced logical statements. A comprehensive literature review was carried out to ensure that the most relevant studies were included. This type of review clarifies publication selection criteria and allows evaluation of the studies conducted and their repetition or extension.

Keywords: systematic review, sustainable, fisheries, aquaculture

Procedia PDF Downloads 93
5712 The Content-Based Classroom: Perspectives on Integrating Language and Content

Authors: Mourad Ben Bennani

Abstract:

Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching.

Keywords: CBI, CLIL, CBI continuum, CLIL models

Procedia PDF Downloads 432
5711 Defining Polysubstance Use in Adolescents: A Literary Review

Authors: Cailyn Green

Abstract:

This research investigated the lack of standardization that exists in the field of polysubstance use. This standardization has to do with a uniform way of defining when and if polysubstance is taking place. This research is important to the field of substance abuse as it makes future researchers aware of this lack of uniformity in a commonly used word in the field. By investigating, we make researchers aware of these discrepancies to encourage a uniform definition to be created and used. The methodology for this research was a literary review. This literature review consisted of four peer-reviewed and published journal articles in four different journals. These articles focused on adolescents and their polysubstance use. The research question asked what time frame was used to determine if a client's substance use can be classified as polysubstance use when they reported using two or more substances. The results identify that there is no uniform working definition of the time frame for polysubstance to take place.

Keywords: addiction, adolescence, literary review, polysubstance

Procedia PDF Downloads 85
5710 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 335
5709 A Collection of Voices on Higher Educational Access, Quality and Equity in Africa: A Systematic Review

Authors: Araba A. Z. Osei-Tutu, Ebenezer Odame, Joseph Bawa, Samuel Amponsah

Abstract:

Education is recognized as a fundamental human right and a catalyst for development. Despite progress in the provision of higher education on the African continent, there persist challenges with the tripartite areas of access, equity and quality. Therefore, this systematic review aimed at providing a comprehensive overview of conversations and voices of scholars on these three concepts in HE in Africa. The systematic review employed a thematic analysis approach, synthesizing findings from 38 selected sources. After a critical analysis of the sources included in the systematic review, deficits in access, quality, and equity were outlined, focusing on infrastructure, regional disparities, and privatization challenges. The review also revealed the weak enforcement of quality assurance measures. Strategies for improvement, proffered by the study, include expanding public sector HE, deregulating the educational sector, promoting open and distance learning, implementing preferential admission policies, and enhancing financial aid. This research contributes valuable insights for policymakers, educators, and stakeholders, fostering a collaborative approach to address challenges and promote holistic development in African higher education.

Keywords: access, equity, quality, higher education, Africa, systematic review, strategies

Procedia PDF Downloads 68
5708 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels

Authors: Naresh Reddy Kolanu

Abstract:

The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.

Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model

Procedia PDF Downloads 40
5707 A Systematic Review of Ethical Leadership in Tourism and Hospitality Settings

Authors: Majd Megheirkouni

Abstract:

The aim of this study is to identify empirical studies that explore and investigate ethical leadership in order to assess and synthesize its impacts and outcomes. This study seeks to provide an evidence-informed answer to a set of questions on ethical leadership definition in the field of tourism and hospitality, its investigation, and examination, and its outcome. A systematic literature review, using medical science-based methodology, was conducted to synthesize research by reliable means. Four themes were identified from the analysis. These themes are: Ethical leaders’ characteristics, healthy work environment, ethical leadership effectiveness, and the application of ethical leadership across cultures. This study provides the potential to move hospitality and tourism leadership forward and encourage researchers to investigate new research topics. To the best of the author’s knowledge, this is the first systematic review focusing on ethical leadership in tourism and hospitality settings.

Keywords: ethical leadership, approach, outcome, tourism, hospitality, systematic review

Procedia PDF Downloads 98
5706 Designing Price Stability Model of Red Cayenne Pepper Price in Wonogiri District, Centre Java, Using ARCH/GARCH Method

Authors: Fauzia Dianawati, Riska W. Purnomo

Abstract:

Food and agricultural sector become the biggest sector contributing to inflation in Indonesia. Especially in Wonogiri district, red cayenne pepper was the biggest sector contributing to inflation on 2016. A national statistic proved that in recent five years red cayenne pepper has the highest average level of fluctuation among all commodities. Some factors, like supply chain, price disparity, production quantity, crop failure, and oil price become the possible factor causes high volatility level in red cayenne pepper price. Therefore, this research tries to find the key factor causing fluctuation on red cayenne pepper by using ARCH/GARCH method. The method could accommodate the presence of heteroscedasticity in time series data. At the end of the research, it is statistically found that the second level of supply chain becomes the biggest part contributing to inflation with 3,35 of coefficient in fluctuation forecasting model of red cayenne pepper price. This model could become a reference to the government to determine the appropriate policy in maintaining the price stability of red cayenne pepper.

Keywords: ARCH/GARCH, forecasting, red cayenne pepper, volatility, supply chain

Procedia PDF Downloads 185
5705 A Review on Application of Waste Tire in Concrete

Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su

Abstract:

The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.

Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects

Procedia PDF Downloads 330
5704 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile

Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa

Abstract:

The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.

Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand

Procedia PDF Downloads 171
5703 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions

Authors: K. Hardy, A. Maurushat

Abstract:

Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.

Keywords: big data, open data, productivity, data governance

Procedia PDF Downloads 370
5702 Marketing–Operations Alignment: A Systematic Literature and Citation Network Analysis Review

Authors: Kedwadee Sombultawee, Sakun Boon-Itt

Abstract:

This research demonstrates a systematic literature review of 62 peer-reviewed articles published in academic journals from 2000-2016 focusing on the operation and marketing interface area. The findings show the three major clusters of recent research domains, which is a review of the alignment between operations and marketing, identification of variables that impact the company and analysis of the effect of interface. Moreover, the Main Path Analysis (MPA) is mapped to show the knowledge structure of the operation and marketing interface issue. Most of the empirical research focused on company performance and new product development then analyzed the data by the structural equation model or regression. Whereas, some scholars studied the conflict of these two functions and proposed the requirement or step for alignment. Finally, the gaps in the literature are provided for future research directions.

Keywords: operations management, marketing, interface, systematic literature review

Procedia PDF Downloads 273
5701 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 493
5700 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 71
5699 Men’s Engagement in Intimate Partner Violence (IPV) Prevention Programs

Authors: Zeynep Turhan

Abstract:

This review emphasized the effectiveness of men’s participation, and whether non-violent (NV) boys’ and men’s perceptions of IPV prevention programs affect their involvement. Additionally, the review aimed to identify the barriers of non-engagement as well as the most effective approaches to end and prevent violence-against-women (VAW). The main goals of this assessment were to investigate 1) how NV men engage in anti-violence prevention programs that empower women, 2) what are the possible perceptions of NV men involved in prevention programs 3) how to identify effective approaches and strategies that encourage NV men to become involved in prevention programs. This critical review also included the overview of prevention programs such as The Mentors in Violence Prevention Programs (MVP), The White Ribbon Campaign (WRC), and Domestic Violence Prevention Enhancement and Leadership through Alliances (DELTA). The review recommended expanding these programs to reach more macro settings such as workplace, faith-based and other community-based organizations. Additionally, secondary and territory prevention programs need to expand through addressing the long-term effects of violence.

Keywords: engagement, non-violent men, prevention programs

Procedia PDF Downloads 413
5698 Threat Modeling Methodology for Supporting Industrial Control Systems Device Manufacturers and System Integrators

Authors: Raluca Ana Maria Viziteu, Anna Prudnikova

Abstract:

Industrial control systems (ICS) have received much attention in recent years due to the convergence of information technology (IT) and operational technology (OT) that has increased the interdependence of safety and security issues to be considered. These issues require ICS-tailored solutions. That led to the need to creation of a methodology for supporting ICS device manufacturers and system integrators in carrying out threat modeling of embedded ICS devices in a way that guarantees the quality of the identified threats and minimizes subjectivity in the threat identification process. To research, the possibility of creating such a methodology, a set of existing standards, regulations, papers, and publications related to threat modeling in the ICS sector and other sectors was reviewed to identify various existing methodologies and methods used in threat modeling. Furthermore, the most popular ones were tested in an exploratory phase on a specific PLC device. The outcome of this exploratory phase has been used as a basis for defining specific characteristics of ICS embedded devices and their deployment scenarios, identifying the factors that introduce subjectivity in the threat modeling process of such devices, and defining metrics for evaluating the minimum quality requirements of identified threats associated to the deployment of the devices in existing infrastructures. Furthermore, the threat modeling methodology was created based on the previous steps' results. The usability of the methodology was evaluated through a set of standardized threat modeling requirements and a standardized comparison method for threat modeling methodologies. The outcomes of these verification methods confirm that the methodology is effective. The full paper includes the outcome of research on different threat modeling methodologies that can be used in OT, their comparison, and the results of implementing each of them in practice on a PLC device. This research is further used to build a threat modeling methodology tailored to OT environments; a detailed description is included. Moreover, the paper includes results of the evaluation of created methodology based on a set of parameters specifically created to rate threat modeling methodologies.

Keywords: device manufacturers, embedded devices, industrial control systems, threat modeling

Procedia PDF Downloads 78
5697 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 41
5696 Enhancing Building Performance Simulation Through Artificial Intelligence

Authors: Thamer Mahmmoud Muhammad Al Jbarat

Abstract:

Building Performance Simulation plays a crucial role in optimizing energy efficiency, comfort, and sustainability in buildings. This paper explores the integration of Artificial Intelligence techniques into Building Performance Simulation to enhance accuracy, efficiency, and adaptability. The synthesis of Artificial Intelligence and Building Performance Simulation offers promising avenues for addressing complex building dynamics, optimizing energy consumption, and improving occupants' comfort. This paper examines various Artificial Intelligence methodologies and their applications in Building Performance Simulation, highlighting their potential benefits and challenges. Through a comprehensive review of existing literature and case studies, this paper presents insights into the current state, future directions, and implications of Artificial Intelligence driven Building Performance Simulation on the built environment

Keywords: artificial intelligence, building performance, energy efficiency, building performance simulation, buildings sustainability, built environment.

Procedia PDF Downloads 22
5695 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
5694 Prediction of Childbearing Orientations According to Couples' Sexual Review Component

Authors: Razieh Rezaeekalantari

Abstract:

Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.

Keywords: couples referring, health center, sexual review component, parenting orientations

Procedia PDF Downloads 218
5693 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula

Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan

Abstract:

This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.

Keywords: simulation-based teaching, hands-on learning, feedback-based learning, scaffolding

Procedia PDF Downloads 460
5692 A Systematic Review on Assessing the Prevalence, Types, and Predictors of Sleep Disturbances in Childhood Traumatic Brain Injury

Authors: E. Botchway, C. Godfrey, V. Anderson, C. Catroppa

Abstract:

Introduction: Sleep disturbances are common after childhood traumatic brain injury (TBI). This systematic review aimed to assess the prevalence, types, and predictors of sleep disturbances in childhood TBI. Methods: Medline, Pubmed, PsychInfo, Web of Science, and EMBASE databases were searched. Out of the 547 articles assessed, 15 met selection criteria for this review. Results: Sleep disturbances were common in children and adolescents with TBI, irrespective of injury severity. Excessive daytime sleepiness and insomnia were the most common sleep disturbances reported. Sleep disturbance was predicted by sex, injury severity, pre-existing sleep disturbances, younger age, pain, and high body mass index. Conclusions: Sleep disturbances are highly prevalent in childhood TBI, regardless of the injury severity. Routine assessment of sleep in survivors of childhood TBI is recommended.

Keywords: traumatic brain injury, sleep diatiurbances, childhood, systematic review

Procedia PDF Downloads 390
5691 Analysis of the Evolution of Social and Economic Indicators of the Mercosur´s Members: 1980-2012

Authors: L. Aparecida Bastos, J. Leige Lopes, J. Crepaldi, R. Monteiro da Silva

Abstract:

The objective of this study is to analyze the evolution of some social and economic indicators of Mercosur´s economies from 1980 to 2012, based on the statistics of the Latin American Integration Association (LAIA). The objective is to observe if after the accession of these economies to Mercosur (the first accessions occurred in 1994) these indicators showed better performance, in order to demonstrate if economic integration contributed to improved trade, macroeconomic performance, and level of social and economic development of member countries. To this end, the methodologies used will be a literature review and descriptive statistics. The theoretical framework that guides the work are the theories of Integration: Classical Liberal, Marxist and structural-proactive. The results reveal that most social and economic indicators showed better performance in those economies that joined Mercosur after 1994. This work is the result of an investigation already completed.

Keywords: economic integration, Mercosur, social indicators, economic indicators

Procedia PDF Downloads 295