Search results for: effective volume fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12455

Search results for: effective volume fraction

12185 Effective Teaching without Digital Enhancement

Authors: D. A. Carnegie

Abstract:

Whilst there is a movement towards increased digital augmentation in order to facilitate effective tertiary learning, this must come with an awareness of the limitations of such an approach. Learning is best achieved in an environment that includes their learning peers where difficulties can be shared and learning enabled. Policy that advocates for digital technology in place of a physical classroom is dangerous and is often driven by financial concerns rather than pedagogical ones. In this paper, a mostly digital-less form of teaching is presented – one that has proven to be extremely effective. Implicit is anecdotal evidence that student prefer the old overhead transparencies to PowerPoint presentations. Varying and reinforcing assessment, facilitation of effective note-taking, and just actively engaging with students is at the core of a good tertiary education experience. Digital techniques can augment and complement, but not replace these core personal teaching requirements.

Keywords: engineering education, active classroom engagement, effective note taking, reinforcing assessment

Procedia PDF Downloads 350
12184 Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite

Authors: Dattaji K. Shinde, Ajit D. Kelkar

Abstract:

Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.

Keywords: electrospun nanofibers, H-VARTM, interlaminar shear strength, matrix modification

Procedia PDF Downloads 218
12183 A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows

Authors: Yanni Chang, Dezhi Dai, Albert Y. Tong

Abstract:

Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones.

Keywords: interpolation scheme, multiphase flows, overset meshes, PLIC-VOF method

Procedia PDF Downloads 174
12182 Focusing on Effective Translation Teaching in the Classroom: A Case Study

Authors: Zhi Huang

Abstract:

This study follows on from previous survey and focus group research exploring the effective teaching process in a translation classroom in Australian universities through case study method. The data analysis draws on social constructivist theory in translation teaching and focuses on teaching process aiming to discover how effective translation teachers conduct teaching in the classroom. The results suggest that effective teaching requires the teacher to have ability in four aspects: classroom management, classroom pedagogy, classroom communication, and teacher roles. Effective translation teachers are able to control the whole learning process, facilitate students in independent learning, guide students to be more critical about translation, giving both positive and negative feedback for students to reflect on their own, and being supportive, patient and encouraging to students for better classroom communication and learning outcomes. This study can be applied to other teachers in translation so that they can reflect on their own teaching in their education contexts and strive for being a more qualified translation teacher and achieving teaching effectiveness.

Keywords: case study, classroom observation, classroom teaching, effective translation teaching, teacher effectiveness

Procedia PDF Downloads 421
12181 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 402
12180 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study

Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP

Abstract:

The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.

Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract

Procedia PDF Downloads 306
12179 Scale-Up Study of Gas-Liquid Two Phase Flow in Downcomer

Authors: Jayanth Abishek Subramanian, Ramin Dabirian, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Downcomers are important conduits for multiphase flow transfer from offshore platforms to the seabed. Uncertainty in the predictions of the pressure drop of multiphase flow between platforms is often dominated by the uncertainty associated with the prediction of holdup and pressure drop in the downcomer. The objectives of this study are to conduct experimental and theoretical scale-up study of the downcomer. A 4-in. diameter vertical test section was designed and constructed to study two-phase flow in downcomer. The facility is equipped with baffles for flow area restriction, enabling interchangeable annular slot openings between 30% and 61.7%. Also, state-of-the-art instrumentation, the capacitance Wire-Mesh Sensor (WMS) was utilized to acquire the experimental data. A total of 76 experimental data points were acquired, including falling film under 30% and 61.7% annular slot opening for air-water and air-Conosol C200 oil cases as well as gas carry-under for 30% and 61.7% opening utilizing air-Conosol C200 oil. For all experiments, the parameters such as falling film thickness and velocity, entrained liquid holdup in the core, gas void fraction profiles at the cross-sectional area of the liquid column, the void fraction and the gas carry under were measured. The experimental results indicated that the film thickness and film velocity increase as the flow area reduces. Also, the increase in film velocity increases the gas entrainment process. Furthermore, the results confirmed that the increase of gas entrainment for the same liquid flow rate leads to an increase in the gas carry-under. A power comparison method was developed to enable evaluation of the Lopez (2011) model, which was created for full bore downcomer, with the novel scale-up experiment data acquired from the downcomer with the restricted area for flow. Comparison between the experimental data and the model predictions shows a maximum absolute average discrepancy of 22.9% and 21.8% for the falling film thickness and velocity, respectively; and a maximum absolute average discrepancy of 22.2% for fraction of gas carried with the liquid (oil).

Keywords: two phase flow, falling film, downcomer, wire-mesh sensor

Procedia PDF Downloads 165
12178 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles

Authors: Dhuha Albusalih, David Weston, Simon Gill

Abstract:

Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.

Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites

Procedia PDF Downloads 305
12177 Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding

Authors: Mehdi Salari

Abstract:

This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min.

Keywords: martensite process, accumulative roll bonding, recrystallization, nanostructure, plain carbon steel

Procedia PDF Downloads 377
12176 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency

Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San

Abstract:

A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.

Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency

Procedia PDF Downloads 355
12175 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated numerically. The physical model is a square enclosure with insulated top and bottom horizontal walls while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60, and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in the different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: nanofluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number

Procedia PDF Downloads 393
12174 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 224
12173 Interdisciplinary Method Development - A Way to Realize the Full Potential of Textile Resources

Authors: Nynne Nørup, Julie Helles Eriksen, Rikke M. Moalem, Else Skjold

Abstract:

Despite a growing focus on the high environmental impact of textiles, textile waste is only recently considered as part of the waste field. Consequently, there is a general lack of knowledge and data within this field. Particularly the lack of a common perception of textiles generates several problems e.g., to recognize the full material potential the fraction contains, which is cruel if the textile must enter the circular economy. This study aims to qualify a method to make the resources in textile waste visible in a way that makes it possible to move them as high up in the waste hierarchy as possible. Textiles are complex and cover many different types of products, fibers and combinations of fibers and production methods. In garments alone, there is a great variety, even when narrowing it to only undergarments. However, textile waste is often reduced to one fraction, assessed solely by quantity, and compared to quantities of other waste fractions. Disregarding the complexity and reducing textiles to a single fraction that covers everything made of textiles increase the risk of neglecting the value of the materials, both with regards to their properties and economical. Instead of trying to fit textile waste into the current primarily linear waste system where volume is a key part of the business models, this study focused on integrating textile waste as a resource in the design and production phase. The study combined interdisciplinary methods for determining replacement rates used in Life Cycle Assessments and Mass Flow Analysis methods with the designer’s toolbox to hereby activate the properties of textile waste in a way that can unleash its potential optimally. It was hypothesized that by activating Denmark's tradition for design and high level of craftsmanship, it is possible to find solutions that can be used today and create circular resource models that reduce the use of virgin fibers. Through waste samples, case studies, and testing of various design approaches, this study explored how to functionalize the method so that the product after the end-use is kept as a material and only then processed at fiber level to obtain the best environmental utilization. The study showed that the designers' ability to decode the properties of the materials and understanding of craftsmanship were decisive for how well the materials could be utilized today. The later in the life cycle the textiles appeared as waste, the more demanding the description of the materials to be sufficient, especially if to achieve the best possible use of the resources and thus a higher replacement rate. In addition, it also required adaptation in relation to the current production because the materials often varied more. The study found good indications that part of the solution is to use geodata i.e., where in the life cycle the materials were discarded. An important conclusion is that a fully developed method can help support better utilization of textile resources. However, it stills requires a better understanding of materials by the designers, as well as structural changes in business and society.

Keywords: circular economy, development of sustainable processes, environmental impacts, environmental management of textiles, environmental sustainability through textile recycling, interdisciplinary method development, resource optimization, recycled textile materials and the evaluation of recycling, sustainability and recycling opportunities in the textile and apparel sector

Procedia PDF Downloads 95
12172 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 311
12171 Influence of Environmental Conditions on a Solar Assisted Mashing Process

Authors: Ana Fonseca, Stefany Villacis

Abstract:

In this paper, the influence of several scenarios on a model of solar assisted mashing process in a brewery, while applying the model to different locations and therefore changing the environmental conditions, was analyzed. Assorted beer producer locations in different countries around the globe with contrasting climatic zones such as Guayaquil (Ecuador), Bangkok (Thailand), Mumbai (India), Veracruz (Mexico) and Brisbane (Australia) were evaluated and compared with a base case study Oldenburg (Germany), and results were drawn. The evaluation was restricted to the results obtained using TRNSYS 16 as simulating tool. On the base case, an annual Solar Fraction (SF) of 0.50 was encountered, results showed highly affection when modifying the pump control of the primary circuit and when increasing the area of collectors. A sensitivity analysis of the system for the selected locations was performed, resulting in Guayaquil the highest annual SF with a ratio of 2.5 times the expected value as compared with the base case. In contrast, Brisbane presented the lowest ratio, resulting in half of the expected one due to its lower irradiance. In conclusion, cities in Sunbelt countries have the technical potential to apply solar heat for their low-temperature industrial processes, in this case implementing a green brewery in Guayaquil.

Keywords: evacuated tubular solar collector, irradiance, mashing process, solar fraction, solar thermal

Procedia PDF Downloads 140
12170 The Design of a Phase I/II Trial of Neoadjuvant RT with Interdigitated Multiple Fractions of Lattice RT for Large High-grade Soft-Tissue Sarcoma

Authors: Georges F. Hatoum, Thomas H. Temple, Silvio Garcia, Xiaodong Wu

Abstract:

Soft Tissue Sarcomas (STS) represent a diverse group of malignancies with heterogeneous clinical and pathological features. The treatment of extremity STS aims to achieve optimal local tumor control, improved survival, and preservation of limb function. The National Comprehensive Cancer Network guidelines, based on the cumulated clinical data, recommend radiation therapy (RT) in conjunction with limb-sparing surgery for large, high-grade STS measuring greater than 5 cm in size. Such treatment strategy can offer a cure for patients. However, when recurrence occurs (in nearly half of patients), the prognosis is poor, with a median survival of 12 to 15 months and with only palliative treatment options available. The spatially-fractionated-radiotherapy (SFRT), with a long history of treating bulky tumors as a non-mainstream technique, has gained new attention in recent years due to its unconventional therapeutic effects, such as bystander/abscopal effects. Combining single fraction of GRID, the original form of SFRT, with conventional RT was shown to have marginally increased the rate of pathological necrosis, which has been recognized to have a positive correlation to overall survival. In an effort to consistently increase the pathological necrosis rate over 90%, multiple fractions of Lattice RT (LRT), a newer form of 3D SFRT, interdigitated with the standard RT as neoadjuvant therapy was conducted in a preliminary clinical setting. With favorable results of over 95% of necrosis rate in a small cohort of patients, a Phase I/II clinical study was proposed to exam the safety and feasibility of this new strategy. Herein the design of the clinical study is presented. In this single-arm, two-stage phase I/II clinical trial, the primary objectives are >80% of the patients achieving >90% tumor necrosis and to evaluation the toxicity; the secondary objectives are to evaluate the local control, disease free survival and overall survival (OS), as well as the correlation between clinical response and the relevant biomarkers. The study plans to accrue patients over a span of two years. All patient will be treated with the new neoadjuvant RT regimen, in which one of every five fractions of conventional RT is replaced by a LRT fraction with vertices receiving dose ≥10Gy while keeping the tumor periphery at or close to 2 Gy per fraction. Surgical removal of the tumor is planned to occur 6 to 8 weeks following the completion of radiation therapy. The study will employ a Pocock-style early stopping boundary to ensure patient safety. The patients will be followed and monitored for a period of five years. Despite much effort, the rarity of the disease has resulted in limited novel therapeutic breakthroughs. Although a higher rate of treatment-induced tumor necrosis has been associated with improved OS, with the current techniques, only 20% of patients with large, high-grade tumors achieve a tumor necrosis rate exceeding 50%. If this new neoadjuvant strategy is proven effective, an appreciable improvement in clinical outcome without added toxicity can be anticipated. Due to the rarity of the disease, it is hoped that such study could be orchestrated in a multi-institutional setting.

Keywords: lattice RT, necrosis, SFRT, soft tissue sarcoma

Procedia PDF Downloads 58
12169 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study

Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi

Abstract:

Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.

Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant

Procedia PDF Downloads 117
12168 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 185
12167 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact

Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze

Abstract:

Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.

Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric

Procedia PDF Downloads 168
12166 Experimental Investigation on the Behavior of Steel Fibers Reinforced Concrete under Impact Loading

Authors: Feng Fu, Ahmad Bazgir

Abstract:

This study aimed to investigate and examine the structural behaviour of steel fibre reinforced concrete slabs when subjected to impact loading using drop weight method. A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. The experimental work consists of testing both conventional reinforced slabs and SFRC slabs. Parameters to be considered for carrying out the test will consist of the volume fraction of steel fibre, type of steel fibres, drop weight height and number of blows. Energy absorption of slabs under impact loading and failure modes were examined in-depth and compared with conventional reinforced concrete slab are investigated.

Keywords: steel fibre reinforce concrete, compressive test, tensile splitting test, impact test

Procedia PDF Downloads 421
12165 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.

Keywords: nano fluids, heat transfer, flattend tube, transport phenomena

Procedia PDF Downloads 431
12164 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 266
12163 Soil Sensibility Characterization of Granular Soils Due to Suffusion

Authors: Abdul Rochim, Didier Marot, Luc Sibille

Abstract:

This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.

Keywords: erodimeter, sandy gravel, suffusion, water seepage energy

Procedia PDF Downloads 446
12162 Effective Microorganisms as a Sustainable Environment Product and Their Application: A Study in Pakistan

Authors: Jaffar Hussain, Farman Ali Shah

Abstract:

As we know that Pakistan is the developing country so it adopts new technologies for progress. In last three decays, some new technologies were introduced in the world in which Effective Microorganism was one of them. Microorganisms are one of the most power full living forces on earth. Originally, EM was developed as an odor control, farm, and animal health, human health many industrial treatments. Effective Microorganism is an organic fertilizer that contains a mixture of co-existing valuable microorganism composed from the environment. There are vast application of the EM in the world in which the researchers are explained in literature .In Pakistan work on EM technologies are under process, researcher are doing work to make them most valuable. At that time the application of EM are in agriculture, water treatment, to increase Cement strength, improving saline soil etc. Effective microorganisms are environmentally friendly , not-naturally organized, not chemically synthesized, not dangerous and not pathogenic.

Keywords: developing country, technologies, effective microorganism, researchers, Pakistan, agriculture

Procedia PDF Downloads 483
12161 Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa Seeds by Sulforhodamine-B Assay-Guided Fractionation

Authors: Harshani Uggallage, Kapila D. Dissanayaka

Abstract:

A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction, and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells.

Keywords: cytotoxic compounds, half-maximal inhibitory concentration, high-performance liquid chromatography, human HepG2 cells, nigella sativa seeds, Sulforhodamine-B assay

Procedia PDF Downloads 398
12160 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change

Procedia PDF Downloads 245
12159 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites

Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile, flexural and impact behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/HDPE composites when compared to the pure HDPE and unmodified fibers reinforced composites.

Keywords: palm fibers, polymer composites, mechanical properties, high density polyethylene (HDPE)

Procedia PDF Downloads 394
12158 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 450
12157 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications

Authors: Ashima Sharma, Tapan K. Chaudhuri

Abstract:

Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.

Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing

Procedia PDF Downloads 345
12156 Incorporating Ground Sand in Production of Self-Consolidating Concrete to Decrease High Paste Volume and Improve Passing Ability of Self-Consolidating Concrete

Authors: S. K. Ling, A. K. H. Kwan

Abstract:

The production of SCC (self-consolidating concrete) generally requires a fairy high paste volume, ranging from 35% to 40% of the total concrete volume. Such high paste volume would lead to low dimensional stability and high carbon footprint. Direct lowering the paste volume would deteriorate the performance of SCC, especially the passing ability. It is often observed that at narrow gap of congested reinforcements, the paste often flows in the front leaving the coarse aggregate particle behind to block the subsequent flow of concrete. Herein, it is suggested to increase the mortar volume through incorporating ground sand with a mean size of 0.3 mm while keeping the paste volume small. Trial concrete mixes with paste volumes of 30% and 34% and different ground sand contents have been tested to demonstrate how the paste volume can be lowered without sacrificing the passing ability. Overall, the results demonstrated that the addition of ground sand would enable the achievement of high passing ability at a relatively small paste volume.

Keywords: ground sand, mortar volume, paste volume, self-consolidating concrete

Procedia PDF Downloads 278