Search results for: bicycle track
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 373

Search results for: bicycle track

103 Effects of Acupuncture Treatment in Gait Parameters in Parkinson's Disease

Authors: Catarina Isabel Ramos Pereira, Jorge Machado, Begona Alonso Criado, Maria João Santos

Abstract:

Introduction: Gait disorders are one of the symptoms that have severe implications on the quality of life in Parkinson's disease (PD). Currently, there is no therapy to reverse or treat this condition. None of the drugs used in conventional medical treatment is entirely efficient, and all have a high incidence of side effects. Acupuncture treatment is believed to improve motor ability, but there is still little scientific evidence in individuals with PD. Aim: The aim of the study is to investigate the acute effect of acupuncture on gait parameters in Parkinson's disease. Methods: This is a randomized and controlled crossover study. The same individual patient was part of both the experimental (real acupuncture) and control group (false acupuncture/sham), and the sequence was randomized. Gait parameters were measured at two different moments, before and after treatment, using four force platforms as well as the collection of 3D markers positions taken by 11 cameras. Images were quantitatively analyzed using Qualisys Track Manager software that let us extract data related to the quality of gait and balance. Seven patients with the diagnosis of Parkinson's disease were included in the study. Results: Statistically significant differences were found in gait speed (p = 0.016), gait cadence (p = 0.006), support base width (p = 0.0001), medio-lateral oscillation (p = 0.017), left-right step length (p = 0.0002), and stride length: right-right (p = 0.0000) and left-left (p = 0.0018), time of left support phase (p = 0.029), right support phase (p = 0.025) and double support phase (p = 0.015), between the initial and final moments for the experimental group. Differences in right-left stride length were found for both groups. Conclusion: Our results show that acupuncture could enhance gait in Parkinson's disease patients. Deep research involving a larger number of volunteers should be accomplished to validate these encouraging findings.

Keywords: acupuncture, traditional Chinese medicine, Parkinson's disease, gait

Procedia PDF Downloads 171
102 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health

Authors: Mualla McManus, Jenna Luche Thaye

Abstract:

World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.

Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation

Procedia PDF Downloads 193
101 Sustainability in Community-Based Forestry Management: A Case from Nepal

Authors: Tanka Nath Dahal

Abstract:

Community-based forestry is seen as a promising instrument for sustainable forest management (SFM) through the purposeful involvement of local communities. Globally, forest area managed by local communities is on the rise. However, transferring management responsibilities to forest users alone cannot guarantee the sustainability of forest management. A monitoring tool, that allows the local communities to track the progress of forest management towards the goal of sustainability, is essential. A case study, including six forest user groups (FUGs), two from each three community-based forestry models—community forestry (CF), buffer zone community forestry (BZCF), and collaborative forest management (CFM) representing three different physiographic regions, was conducted in Nepal. The study explores which community-based forest management model (CF, BZCF or CFM) is doing well in terms of sustainable forest management. The study assesses the overall performance of the three models towards SFM using locally developed criteria (four), indicators (26) and verifiers (60). This paper attempts to quantify the sustainability of the models using sustainability index for individual criteria (SIIC), and overall sustainability index (OSI). In addition, rating to the criteria and scoring of the verifiers by the FUGs were done. Among the four criteria, the FUGs ascribed the highest weightage to institutional framework and governance criterion; followed by economic and social benefits, forest management practices, and extent of forest resources. Similarly, the SIIC was found to be the highest for the institutional framework and governance criterion. The average values of OSI for CFM, CF, and BZCF were 0.48, 0.51 and 0.60 respectively; suggesting that buffer zone community forestry is the more sustainable model among the three. The study also suggested that the SIIC and OSI help local communities to quantify the overall progress of their forestry practices towards sustainability. The indices provided a clear picture of forest management practices to indicate the direction where they are heading in terms of sustainability; and informed the users on issues to pay attention to enhancing the sustainability of their forests.

Keywords: community forestry, collaborative management, overall sustainability, sustainability index for individual criteria

Procedia PDF Downloads 248
100 E-Learning Platform for School Kids

Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.

Abstract:

E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.

Keywords: math, education games, e-learning platform, artificial intelligence

Procedia PDF Downloads 156
99 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 74
98 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 377
97 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 534
96 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
95 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
94 Suitability Evaluation of Human Settlements Using a Global Sensitivity Analysis Method: A Case Study in of China

Authors: Feifei Wu, Pius Babuna, Xiaohua Yang

Abstract:

The suitability evaluation of human settlements over time and space is essential to track potential challenges towards suitable human settlements and provide references for policy-makers. This study established a theoretical framework of human settlements based on the nature, human, economy, society and residence subsystems. Evaluation indicators were determined with the consideration of the coupling effect among subsystems. Based on the extended Fourier amplitude sensitivity test algorithm, the global sensitivity analysis that considered the coupling effect among indicators was used to determine the weights of indicators. The human settlement suitability was evaluated at both subsystems and comprehensive system levels in 30 provinces of China between 2000 and 2016. The findings were as follows: (1) human settlements suitability index (HSSI) values increased significantly in all 30 provinces from 2000 to 2016. Among the five subsystems, the suitability index of the residence subsystem in China exhibited the fastest growinggrowth, fol-lowed by the society and economy subsystems. (2) HSSI in eastern provinces with a developed economy was higher than that in western provinces with an underdeveloped economy. In con-trast, the growing rate of HSSI in eastern provinces was significantly higher than that in western provinces. (3) The inter-provincial difference of in HSSI decreased from 2000 to 2016. For sub-systems, it decreased for the residence system, whereas it increased for the economy system. (4) The suitability of the natural subsystem has become a limiting factor for the improvement of human settlements suitability, especially in economically developed provinces such as Beijing, Shanghai, and Guangdong. The results can be helpful to support decision-making and policy for improving the quality of human settlements in a broad nature, human, economy, society and residence context.

Keywords: human settlements, suitability evaluation, extended fourier amplitude, human settlement suitability

Procedia PDF Downloads 80
93 The Impact of Artificial Intelligence on Student’s Behavior and Mind

Authors: Makarios Mosaad Thabet Ibrahim

Abstract:

the existing context paper targets to give the important position of ‘scholar voice’ and the track trainer inside the study room, which contributes to greater scholar-focused song training. The goal is to consciousness at the capabilities of the scholar voice via the tune spectrum, which has been born in the music school room, and the instructor’s methodologies and techniques used within the song classroom. The tune curriculum, the principles of pupil-centered song schooling, and the function of students and teachers as tune ambassadors have been taken into consideration the essential song parameters of scholar voice. The scholar- voice is a well worth-mentioning factor of a scholar-focused training, and all instructors have to take into account and sell its life in their lecture room. student affairs services play a critical function in contributing to the wholistic development and success of college students as they progress through their educational careers. The examine incorporates a multifaceted examination of student affairs carrier offerings among 10 personal and three public Baghdad universities. scholar affairs administrators (thirteen) have been surveyed together with over 300 students to determine university-subsidized services and pupil pride and attention. The pupil affairs service studies findings various drastically among non-public and public establishments and people that observed a country wide and international curriculum. Universities need to persist to conform to changing demographics and technological improvements to enhance students' private and academic successes, and pupil affairs services are key to preparing graduates to thrive in a diverse international world.

Keywords: college student-athletes, self-concept, use of social media training, social networking student affairs, student success, higher education, Iraq, universities, Baghdad student's voice, student-centered education, music ambassadors, music teachers

Procedia PDF Downloads 33
92 Developing Scaffolds for Tissue Regeneration using Low Temperature Plasma (LTP)

Authors: Komal Vig

Abstract:

Cardiovascular disease (CVD)-related deaths occur in 17.3 million people globally each year, accounting for 30% of all deaths worldwide, with a predicted annual incidence of deaths to reach 23.3 million globally by 2030. Autologous bypass grafts remain an important therapeutic option for the treatment of CVD, but the poor quality of the donor patient’s blood vessels, the invasiveness of the resection surgery, and postoperative movement restrictions create issues. The present study is aimed to improve the endothelialization of intimal surface of graft by using low temperature plasma (LTP) to increase the cell attachment and proliferation. Polytetrafluoroethylene (PTFE) was treated with LTP. Air was used as the feed-gas, and the pressure in the plasma chamber was kept at 800 mTorr. Scaffolds were also modified with gelatin and collagen by dipping method. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds, and cell proliferation was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). XPS confirmed the introduction of oxygenated functionalities from LTP. HUVEC cells showed 80% seeding efficiency on the scaffold. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds, especially when treated with gelatin or collagen, compared to untreated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. LTP treated scaffolds exhibited better cell proliferation and viability compared to untreated scaffolds. Protein treatment of scaffold increased cell proliferation. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies. Acknowledgments: This work is supported by the NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-2148653.

Keywords: LTP, HUVEC cells, vascular graft, endothelialization

Procedia PDF Downloads 71
91 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
90 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water

Authors: Umashankar Morya, Somnath Basu

Abstract:

Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.

Keywords: slag, water, metalloid, heavy metal, wastewater

Procedia PDF Downloads 75
89 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71
88 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 86
87 Monetary Evaluation of Dispatching Decisions in Consideration of Choice of Transport

Authors: Marcel Schneider, Nils Nießen

Abstract:

Microscopic simulation programs enable the description of the two processes of railway operation and the previous timetabling. Occupation conflicts are often solved based on defined train priorities on both process levels. These conflict resolutions produce knock-on delays for the involved trains. The sum of knock-on delays is commonly used to evaluate the quality of railway operations. It is either compared to an acceptable level-of-service or the delays are evaluated economically by linearly monetary functions. It is impossible to properly evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for evaluation of dispatching decisions. It uses models of choice of transport and considers the behaviour of the end-costumers. These models evaluate the knock-on delays in more detail than linearly monetary functions and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operation with the macroscopic model of choice of transport. First it will be implemented for the railway operations process, but it can also be used for timetabling. The evaluation considers the possibility to change over to other transport modes by the end-costumers. The new approach first looks at the rail-mounted and road transport, but it can also be extended to air transport. The split of the end-costumers is described by the modal-split. The reactions by the end-costumers have an effect on the revenues of the railway undertakings. Various travel purposes has different pavement reserves and tolerances towards delays. Longer journey times affect besides revenue changes also additional costs. The costs depend either on time or track and arise from circulation of workers and vehicles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of the delays. The contribution margin is calculated for different resolution decisions of the same conflict. The conflict resolution is improved until the monetary loss becomes minimised. The iterative process therefore determines an optimum conflict resolution by observing the change of the contribution margin. Furthermore, a monetary value of each dispatching decision can also be determined.

Keywords: choice of transport, knock-on delays, monetary evaluation, railway operations

Procedia PDF Downloads 328
86 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 267
85 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns

Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph

Abstract:

The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.

Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation

Procedia PDF Downloads 318
84 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing

Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake

Abstract:

Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.

Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors

Procedia PDF Downloads 177
83 Integrated Steering Method for Mitigating Performance Degradation in Six-Wheel Robot Caused by Obstacle Traversing

Authors: Saleh Kasiri Bidhendi, Shiva Tashakori

Abstract:

With the increasing application of six-wheel robots in various industries, including agriculture and environmental monitoring, there is a growing demand for efficient and reliable control systems that can improve manoeuvrability and at the same time reduce energy consumption. Moving on uneven terrains, various factors such as obstacles or soil heterogeneity can cause the robot to slip. There is limited research addressing this issue. Although the robot is supposed to track a predetermined path, sudden lateral deviation necessitates path planning. To further address this issue, explicit steering is added by activating actuators on steerable wheels, while the SMC controller still commands differential traction forces on all wheels. This integration improves energy efficiency and obstacle traversability while maintaining the merits of skid-steering, such as tight turning manoeuvrability. However, achieving the desired steer angles presents certain challenges. Inverse kinematics was initially employed to achieve the needed steering angles from the desired position, but this approach led to excessive steering without yawing the body. Switching to desired velocity values instead of position limited over-steering but caused zero lateral velocity on horizontal paths, which was problematic for unforeseen skidding. To overcome this, a proportional controller has been employed, using lateral error as its input and providing a proportional yaw angle as output, the P-controller contributes to modifying the steering angles. The controller's robustness has been verified through sensitivity analyses under critical speeds and turning radius conditions. Our findings offer valuable insights into designing more efficient steering controls for rocker-bogie mechanisms in challenging situations, emphasizing the importance of reducing energy¬ consumption.

Keywords: six-wheel robots, inverse kinematics, integrated steering, path following, manoeuvrability, energy efficiency, uneven terrains

Procedia PDF Downloads 32
82 Ethno-Botanical Diversity and Conservation Status of Medicinal Flora at High Terrains of Garhwal (Uttarakhand) Himalaya, India: A Case Study in Context to Multifarious Tourism Growth and Peri-Urban Encroachments

Authors: Aravind Kumar

Abstract:

The high terrains of Garhwal (Uttarakhand) Himalaya are the niches of a number of rare and endemic plant species of great therapeutic importance. However, the wild flora of the area is still under a constant threat due to rapid upsurge in human interferences, especially through multifarious tourism growth and peri-urban encroachments. After getting the status of a ‘Special State’ of the country since its inception in the year 2000, this newly borne State led to very rapid infrastructural growth and development. Consequently, its townships started expanding in an unmanaged way grabbing nearby agricultural lands and forest areas into peri-urban landscapes. Simultaneously, a boom in tourism and pilgrimage in the state and the infrastructural facilities raised by the government for tourists/pilgrims are destroying its biodiversity. Field survey revealed 242 plant species of therapeutic significance naturally growing in the area and being utilized by local inhabitants as traditional medicines. On conservation scale, 6 species (2.2%) were identified as critically endangered, 19 species (7.1%) as the endangered ones, 8 species (3.0%) under rare category, 17 species (6.4%) as threatened and 14 species (5.2%) as vulnerable. The Government of India has brought mega-biodiversity hot spots of the state under Biosphere Reserve, National Parks, etc. restricting all kinds of human interferences; however, the two most sacred shrines of Hindus and Sikhs viz. Shri Badrinath and Shri Hemkunt Sahib, and two great touristic attractions viz. Valley of Flowers and Auli-Joshimath Skiing Track oblige the government to maintain equilibrium between entries of visitors vis-à-vis biodiversity conservation in high terrains of Uttarakhand Himalaya.

Keywords: biodiversity conservation, ethno-botany, Garhwal (Uttarakhand) Himalaya, peri-urban encroachment, pilgrimage and tourism

Procedia PDF Downloads 227
81 Thai Student Ability on Speexx Language Training Program

Authors: Toby Gibbs, Glen Craigie, Suwaree Yordchim

Abstract:

Using the Speexx Online Language Training Program with Thai students has allowed us to evaluate their learning comprehension and track their progression through the English language program. Speexx sets the standard for excellence and innovation in web-based language training and online coaching services. The program is designed to improve the business communication skills of language learners for Thai students. Speexx consists of English lessons, exercises, tests, web boards, and supplementary lessons to help students practice English. The sample groups are 191 Thai sophomores studying Business English with the department of Humanities and Social Science. The data was received by standard deviation (S.D.) value from questionnaires and samples provided from the Speexx training program. The results found that most Thai sophomores fail the Speexx training program due to their learning comprehension of the English language is below average. With persisted efforts on new training methods, the success of the Speexx Language Training Program can break through the cultural barriers and help future students adopt English as a second language. The Speexx results revealed four main factors affecting the success as follows: 1) Future English training should be pursued in applied Speexx development. 2) Thai students didn’t see the benefit of having an Online Language Training Program. 3) There is a great need to educate the next generation of learners on the benefits of Speexx within the community. 4) A great majority of Thai Sophomores didn't know what Speexx was. A guideline for self-reliance planning consisted of four aspects: 1) Development planning: by arranging groups to further improve English abilities with the Speexx Language Training program and encourage using Speexx every day. Local communities need to develop awareness of the usefulness of Speexx and share the value of using the program among family and friends. 2) Humanities and Social Science staff should develop skills using this Online Language Training Program to expand on the benefits of Speexx within their departments. 3) Further research should be pursued on the Thai Students progression with Speexx and how it helps them improve their language skills with Business English. 4) University’s and Language centers should focus on using Speexx to encourage learning for any language, not just English.

Keywords: ability, comprehension, sophomore, speexx

Procedia PDF Downloads 369
80 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 482
79 Mothers and Moneymakers: A Case Study of How Citizen-Women Shape U.S. Marriage Migration Politics Online

Authors: Gina Longo

Abstract:

Social media, internet technology, and affordable travel have created avenues like tourism and internet chatrooms for Western women to meet foreign partners without paid, third-party intermediaries in regions like the Middle East/North Africa (MENA) and Sub-Saharan Africa (SSA), where men from mid-level developing countries meet and marry Western women and try to relocate. Foreign nationals who marry U.S. citizens have an expedited track to naturalization. U.S. immigration officials require that “green card” petitioning couples demonstrate that their relationships are “valid and subsisting” (i.e., for love) and not fraudulent (i.e., for immigration papers). These requirements are ostensibly gender- and racially-neutral, but migration itself is not; black and white women petitioners who seek partners from these regions and solicit advice from similar others about the potential obstacles to their petitions’ success online. Using an online ethnography and textual analysis of conversation threads on a large on-line immigration forum where U.S. petitioners exchange such information, this study examines how gendered and racialized standards of legitimacy are applied to family and sexuality and used discursively online among women petitioners differently to achieve “genuineness” and define “red flags” indicating potential marriage fraud. This paper argues that forum-women members police immigration requests even before cases reach an immigration officer, and use this social media platform to reconstruct gendered and racialized hierarchies of U.S. citizenship. Women petitioners use the formal criteria of U.S. immigration in ways that reveal gender and racial ideologies, expectations for conformity to a gendered hegemonic family ideal, and policing of women’s sexual agency, fertility, and desirability. These intersectional norms shape their online discussions about the suitability of marriages and of the migration of non-citizen male partners of color to the United States.

Keywords: marriage fraud, migration, online forums, women

Procedia PDF Downloads 120
78 Psychometric Properties of Several New Positive Psychology Measures

Authors: Lauren Benyo Linford, Jared Warren, Jeremy Bekker, Gus Salazar

Abstract:

In order to accurately identify areas needing improvement and track growth, the availability of valid and reliable measures of different facets of well-being is vital. Because no specific measures currently exist for many facets of well-being, the purpose of this study was to construct and validate measures of the following constructs: Purpose, Values, Mindfulness, Savoring, Gratitude, Optimism, Supportive Relationships, Interconnectedness, Compassion, Community, Contribution, Engaged Living, Personal Growth, Flow Experiences, Self-Compassion, Exercise, Meditation, and an overall measure of subjective well-being—the Survey on Flourishing. In order to assess their psychometric properties, each measure was examined for internal consistency estimates, and items with poor item-test correlations were dropped. Additionally, the convergent validity of the Survey on Flourishing (SURF) was assessed. Total score correlations of SURF and other commonly used measures of well-being such as the Positive and Negative Affect Schedule (PANAS), The Satisfaction with Life Scale (SWLS), the PERMA Profiler (measure of Positive Emotion, Engagement, Relationships, Meaning, and Achievement) were examined to establish convergent validity. The Kessler Psychological distress scale (K6) was also included to determine the divergent validity of the SURF measure. Three week test-retest reliability was also assessed for the SURF measure. Additionally, normative data from general population samples was collected for both the Self-Compassion and Survey on Flourishing (SURF) measures. The purpose of this study is to introduce each of these measures, divulge the psychometric findings of this study, as well as explore additional psychometric properties of the SURF measure in particular. This study will highlight how these measures can be used in future research exploring these positive psychology constructs. Additionally, this study will discuss the utility of these measures to guide individuals in their use of the online self-directed, self-administered My Best Self 101 positive psychology resources developed by the researchers. The goal of My Best Self 101 is to disseminate real, research-based measures and tools to individuals who are seeking to increase their well-being.

Keywords: measurement, psychometrics, test validation, well-Being

Procedia PDF Downloads 188
77 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 325
76 Innovation Management in State-Owned-Enterprises in the Digital Transformation: An Empirical Case Study of Swiss Post

Authors: Jiayun Shen, Lorenz Wyss, Thierry Golliard, Matthias Finger

Abstract:

Innovation is widely recognized as the key for private enterprises to win the market competition. The state-owned-enterprises need to be innovative to compete in the market after the privatization as well. However, it is a lack of research to study how state-owned-enterprises manage innovation to create new products and services. Swiss Post, a Swiss state-owned-enterprises, has established a department to transform the corporate culture and foster innovation to achieve digital transformation. This paper describes the innovation management process at the Swiss Post and analyzes the impacts of the instruments, the organizational structure, and explores the barriers of innovation. This study used qualitative methods based on a review of the literature on innovation management and semi-structured interviews. Being established for over five years, the Swiss Post’s innovation management department has established a software-assisted modularized platform with systematic instruments to help the internal employees with the different innovation processes. It guides the innovators from idea creation to piloting in markets and supports with a separate financing source, with knowledge inputs and coaching, as well as with connections to external partners through the open innovation and venturing team. The platform also adapts to different business units within the corporate with a customized tailor for the various operational business units. The separate financing instruments enabled the creation and further development of new ideas; the coaching services contribute greatly to the transformation of teams’ innovation culture by providing new knowledge, thinking methods, and use cases for inspiration. It also facilitates organizational learning to help the whole corporate with the digital transformation. However, it is also confronted with a big challenge in twofold. Internally, the disruptive projects often hardly overcome the obstacles of long-established operational processes in the traditional business units; externally, the expectations of the public and restrictions from the federal government have become high hurdles for the company to stay and compete in the innovation track.

Keywords: empirical case study, innovation management, state-owned-enterprise, Swiss Post

Procedia PDF Downloads 122
75 Evaluation of Indoor Radon as Air Pollutant in Schools and Control of Exposure of the Children

Authors: Kremena Ivanona, Bistra Kunovska, Jana Djunova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

In recent decades, the general public has become increasingly interested in the impact of air pollutions on their health. Currently, numerous studies are aimed at identifying pollutants in the indoor environment where they carry out daily activities. Internal pollutants can be of both natural and artificial origin. With regard to natural pollutants, special attention is paid to natural radioactivity. In recent years, radon has been one of the most studied indoor pollutants because it has the greatest contribution to human exposure to natural radionuclides. It is a known fact that lung cancer can be caused by radon radiation and it is the second risk factor after smoking for the onset of the disease. The main objective of the study under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 is to evaluate the indoor radon as an important air pollutant in school buildings in order to reduce the exposure to children. The measurements were performed in 48 schools located in 55 buildings in one Bulgarian administrative district (Kardjaly). The nuclear track detectors (CR-39) were used for measurements. The arithmetic and geometric means of radon concentrations are AM = 140 Bq/m3, and GM = 117 Bq/m3 respectively. In 51 school rooms, the radon levels were greater than 200 Bq/m3, and in 28 rooms, located in 17 school buildings, it exceeded the national reference level of 300 Bq/m3, defined in the Bulgarian ordinance on radiation protection (or 30% of the investigated buildings). The statistically significant difference in the values of radon concentration by municipalities (KW, р < 0.001) obtained showed that the most likely reason for the differences between the groups is the geographical location of the buildings and the possible influence of the geological composition. The combined effect of the year of construction (technical condition of the buildings) and the energy efficiency measures was considered. The values of the radon concentration in the buildings where energy efficiency measures have been implemented are higher than those in buildings where they have not been performed. This result confirms the need for investigation of radon levels before conducting the energy efficiency measures in buildings. Corrective measures for reducing the radon levels have been recommended in school buildings with high radon levels in order to decrease the children's exposure.

Keywords: air pollution, indoor radon, children exposure, schools

Procedia PDF Downloads 173
74 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 96