Search results for: aluminium matrix composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3981

Search results for: aluminium matrix composite

3711 Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement

Authors: K. Almi, S.Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance.

Keywords: date palm fibers, surface treatments, thermoplastic composites, thermal analysis

Procedia PDF Downloads 342
3710 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization

Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak

Abstract:

Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.

Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization

Procedia PDF Downloads 292
3709 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 153
3708 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 116
3707 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel

Procedia PDF Downloads 233
3706 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41

Authors: A. Salemi Golezania, A. Sharifi Fateha

Abstract:

In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.

Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering

Procedia PDF Downloads 386
3705 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces

Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh

Abstract:

Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.

Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion

Procedia PDF Downloads 383
3704 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive

Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu

Abstract:

Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.

Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings

Procedia PDF Downloads 125
3703 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 403
3702 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 98
3701 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications

Authors: Fawad Ali, Mohammad Albakri

Abstract:

The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.

Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization

Procedia PDF Downloads 17
3700 Properties Modification of Fiber Metal Laminates by Nanofillers

Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi

Abstract:

During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.

Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification

Procedia PDF Downloads 206
3699 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas

Authors: Mouhamadou Dosso

Abstract:

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue

Procedia PDF Downloads 94
3698 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis

Procedia PDF Downloads 303
3697 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: composite, epoxy, polyester, relining, sewage

Procedia PDF Downloads 342
3696 Elastomeric Nanocomposites for Space Applications

Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila

Abstract:

Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.

Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties

Procedia PDF Downloads 288
3695 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 501
3694 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding

Authors: Wenya Shu, Ilinca Stanciulescu

Abstract:

Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.

Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding

Procedia PDF Downloads 129
3693 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun

Abstract:

In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.

Keywords: fiber treatment, impact modifier, natural fibers, ultrasound

Procedia PDF Downloads 488
3692 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 423
3691 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces

Authors: Faezeh Shalchy

Abstract:

Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.

Keywords: fiber-reinforced concrete, adhesion, molecular modeling

Procedia PDF Downloads 328
3690 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 212
3689 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 155
3688 An Investigation on Energy Absorption Capacity of a Composite Metal Foam Developed from Aluminum by Reinforcing with Cermet Hollow Spheres

Authors: Fisseha Zewdie, Naresh Bhatnagar

Abstract:

Lightweight and strong aluminum foam is developed by reinforcing Al-Si-Cu alloy (LM24) with Cermet Hollow Spheres (CHS) as porous creating agents. The foam samples were prepared by mixing the CHS in molten LM24 at 750°C, using gravity and stir casting. The CHSs were fabricated using a blend of silicon carbide and stainless-steel powders using the powder metallurgy technique. It was found that CHS reinforcement greatly enhances the performance of the composite metal foam, making it suitable for high impact loading applications such as crash protection and shock absorption. This study examined the strength, density, energy absorption and possible applications of the new aluminum foam. The results revealed that the LM24 foam reinforced with the CHS has the highest energy absorption of about 88 MJ/m3 among all categories of foam samples tested. Its density was found to be 1.3 g/cm3, while the strength, densification strains and porosity were 420 MPa, 34% and 70%, respectively. Besides, the matrix and reinforcement's microstructure, chemical composition, X-ray diffraction, HRTEM and related micrographic analyses are performed for characterization and verifications.

Keywords: composite metal foam, hollow spheres, gravity casting, energy absorption

Procedia PDF Downloads 71
3687 The Effect of Irradiation Distance on Microhardness of Hybrid Resin Composite Polymerization Using Light-Emitting Diodes

Authors: Deli Mona, Rafika Husni

Abstract:

The aim of this research is to evaluate the effect of lighting distance on surface hardness of light composite resin. We held laboratory experimental research with post-test only group design. The samples used are 30 disc-like hybrid composite resins with the diameter is 6 mm and the thickness is 2 mm, lighted by an LED for 20 seconds. They were divided into 3 groups, and every group was consisted by 10 samples, which were 0 mm, 2 mm, and 5 mm lighting distance group. Every samples group was treated with hardness test, Vicker Hardness Test, then analyzed with one-way ANOVA test to evaluate the effect of lighting distance differences on surface hardness of light composite resin. Statistic test result shown hardness mean change of composite renin between 0 mm and 2 mm lighting distance with 0.00 significance (p<0.05), between 0 mm and 5 mm lighting distance with 0.00 significance (p<0.05), and 2 mm and 5 mm lighting distance with 0.05 significance (p<0.05). According to the result of this research, we concluded that the further lighting distance, the more surface hardness decline of hybrid composite resin.

Keywords: composite resin hybrid, tip distance, microhardness, light curing LED

Procedia PDF Downloads 346
3686 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.

Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature

Procedia PDF Downloads 392
3685 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
3684 Comparative Study of R.C.C. Steel and Concrete Building

Authors: Mahesh Suresh Kumawat

Abstract:

Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical.

Keywords: composite beam, column, RCC column, RCC beam, shear connector, SAP 2000 software

Procedia PDF Downloads 452
3683 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: e-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination

Procedia PDF Downloads 342
3682 Optimization of Hydrogel Conductive Nanocomposite as Solar Cell

Authors: Shimaa M. Elsaeed, Reem K. Farag, Ibrahim M. Nassar

Abstract:

Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell.

Keywords: hydrogel, solar cell, conductive polymer, nanocomposite

Procedia PDF Downloads 399