Search results for: high-resolution infrared spectra
1740 The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2
Authors: A. Larrousi, M. Elkeurti, K. Amara, M. Zemouli, L. H. Coudert, I. R. Medvedev, F. C. De Lucia, Atsuko Maeda, R. W. C. McKellar, D. Appadoo
Abstract:
Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified.Keywords: CH3COD, torsion, the microwave spectra, far infrared spectra high resolution
Procedia PDF Downloads 3571739 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization
Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson
Abstract:
The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.Keywords: attenuation, infrared, multiphase, spectroscopy
Procedia PDF Downloads 3681738 Rapid Discrimination of Porcine and Tilapia Fish Gelatin by Fourier Transform Infrared- Attenuated Total Reflection Combined with 2 Dimensional Infrared Correlation Analysis
Authors: Norhidayu Muhamad Zain
Abstract:
Gelatin, a purified protein derived mostly from porcine and bovine sources, is used widely in food manufacturing, pharmaceutical, and cosmetic industries. However, the presence of any porcine-related products are strictly forbidden for Muslim and Jewish consumption. Therefore, analytical methods offering reliable results to differentiate the sources of gelatin are needed. The aim of this study was to differentiate the sources of gelatin (porcine and tilapia fish) using Fourier transform infrared- attenuated total reflection (FTIR-ATR) combined with two dimensional infrared (2DIR) correlation analysis. Porcine gelatin (PG) and tilapia fish gelatin (FG) samples were diluted in distilled water at concentrations ranged from 4-20% (w/v). The samples were then analysed using FTIR-ATR and 2DIR correlation software. The results showed a significant difference in the pattern map of synchronous spectra at the region of 1000 cm⁻¹ to 1100 cm⁻¹ between PG and FG samples. The auto peak at 1080 cm⁻¹ that attributed to C-O functional group was observed at high intensity in PG samples compared to FG samples. Meanwhile, two auto peaks (1080 cm⁻¹ and 1030 cm⁻¹) at lower intensity were identified in FG samples. In addition, using 2D correlation analysis, the original broad water OH bands in 1D IR spectra can be effectively differentiated into six auto peaks located at 3630, 3340, 3230, 3065, 2950 and 2885 cm⁻¹ for PG samples and five auto peaks at 3630, 3330, 3230, 3060 and 2940 cm⁻¹ for FG samples. Based on the rule proposed by Noda, the sequence of the spectral changes in PG samples is as following: NH₃⁺ amino acid > CH₂ and CH₃ aliphatic > OH stretch > carboxylic acid OH stretch > NH in secondary amide > NH in primary amide. In contrast, the sequence was totally in the opposite direction for FG samples and thus both samples provide different 2D correlation spectra ranged from 2800 cm-1 to 3700 cm⁻¹. This method may provide a rapid determination of gelatin source for application in food, pharmaceutical, and cosmetic products.Keywords: 2 dimensional infrared (2DIR) correlation analysis, Fourier transform infrared- attenuated total reflection (FTIR-ATR), porcine gelatin, tilapia fish gelatin
Procedia PDF Downloads 2501737 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)
Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira
Abstract:
Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina
Procedia PDF Downloads 2121736 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 2241735 Amorphous Silicon-Based PINIP Structure for Human-Like Photosensor
Authors: Sheng-Chuan Hsu
Abstract:
Because the existing structure of ambient light sensor is most silicon photodiode device, it is extremely sensitive in the red and infrared regions. Even though the IR-Cut filter had added, it still cannot completely eliminate the influence of infrared light, and the spectral response of infrared light was stronger than that of the human eyes. Therefore, it is not able to present the vision spectrum of the human eye reacts with the ambient light. Then it needs to consider that the human eye feels the spectra that show significant differences between light and dark place. Consequently, in practical applications, we must create and develop advanced device of human-like photosensor which can solve these problems of ambient light sensor and let cognitive lighting system to provide suitable light to achieve the goals of vision spectrum of human eye and save energy.Keywords: ambient light sensor, vision spectrum, cognitive lighting system, human eye
Procedia PDF Downloads 3351734 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 941733 Infrared Thermography Applications for Building Investigation
Authors: Hamid Yazdani, Raheleh Akbar
Abstract:
Infrared thermography is a modern non-destructive measuring method for the examination of redeveloped and non-renovated buildings. Infrared cameras provide a means for temperature measurement in building constructions from the inside, as well as from the outside. Thus, heat bridges can be detected. It has been shown that infrared thermography is applicable for insulation inspection, identifying air leakage and heat losses sources, finding the exact position of heating tubes or for discovering the reasons why mold, moisture is growing in a particular area, and it is also used in conservation field to detect hidden characteristics, degradations of building structures. The paper gives a brief description of the theoretical background of infrared thermography.Keywords: infrared thermography, examination of buildings, emissivity, heat losses sources
Procedia PDF Downloads 5201732 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora
Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai
Abstract:
Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins
Procedia PDF Downloads 1791731 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1681730 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy
Procedia PDF Downloads 5051729 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 3821728 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 2711727 Polyvinylidene Fluoride-Polyaniline Films for Improved Dielectric Properties
Authors: Anjana Jain, S. Jayanth Kumar
Abstract:
Polyvinylidene fluoride (PVDF) is a well-known material for remarkable mechanical properties, resistance to chemicals and superior ferroelectric performances. This endows PVDF the potential for application in supercapacitor devices. The dielectric properties of PVDF, however, are not very high. To improve the dielectric properties of Polyvinylidene fluoride (PVDF), Piezoelectric polymer nanocomposites are prepared without affecting the other useful properties of PVDF. Polyaniline (PANI) was chosen as a filler material to prepare the nanocomposites. PVDF-PANI nanocomposite films were prepared using solvent cast method with different volume fractions of PANI varying from 0.04% to 0.048% of PANI content. The films are characterized for structural, mechanical, and surface morphological properties using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The X-ray diffraction analysis shows that, prepared films were in β-phase. The DSC scans indicated that the degree of crystallinity in PVDF-PANI is improved. Raman and Infrared spectrum further confirm the presence of β-phase of PVDF-PANI film. Tensile properties of PVDF-PANI films were in good agreement with those reported in literature. The surface feature shows that PANI is uniformly distributed in PVDF and also results in disappearance of spherulites. The influence of volume fraction of PANI in PVDF on dielectric properties was analyzed. The results showed that the dielectric permittivity of PVDF-PANI (120) was much higher than that of PVDF (12). The sensitivity of these films was studied on application of a pressure and a constant output voltage was obtained.Keywords: dielectric Properties, PANI, PVDF, smart materials
Procedia PDF Downloads 4381726 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties
Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy
Abstract:
Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids
Procedia PDF Downloads 761725 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method
Authors: Khaled Bahgat
Abstract:
In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations
Procedia PDF Downloads 4731724 Study of the Ambiguity of Effective Hamiltonian for the Fundamental Degenerate States V3 of the Molecule 12CD4
Authors: Ouardi Okkacha, Kaarour Abedlkrim, Meskine Mohamed
Abstract:
The effective Hamiltonians are widely used in molecular spectroscopy for the interpretation of the vibration-rotation spectra. Their construction is an ambiguous procedure due to the existence of unitary transformations that change the effective Hamiltonian but do not change its eigenvalues. As a consequence of this ambiguity, it may happen that some parameters of effective Hamiltonians cannot be recovered from experimental data in a unique way. The type of admissible transformations which keeps the operator form of the effective Hamiltonian unaltered and the number of empirically determinable parameters strongly depend on the symmetry type of a molecule (asymmetric top, spherical top, and so on) and on the degeneracy of the vibrational state. In this work, we report the study of the ambiguity of effective Hamiltonian for the fundamental degenerate states v3 of the Molecule 12CD4.Keywords: 12CD4, high-resolution infrared spectra, tetrahedral tensorial formalism, vibrational states, rovibrational line position analysis, XTDS, SPVIEW
Procedia PDF Downloads 4151723 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis
Authors: Farzad Khajavi
Abstract:
Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction
Procedia PDF Downloads 2081722 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric
Authors: N. Najafi, Laleh Maleknia , M. E. Olya
Abstract:
An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings
Procedia PDF Downloads 4221721 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts
Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa
Abstract:
Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond
Procedia PDF Downloads 631720 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction
Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda
Abstract:
Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling
Procedia PDF Downloads 3751719 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 991718 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid
Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah
Abstract:
This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial
Procedia PDF Downloads 3321717 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.Keywords: FT-NIR, pasta, moisture determination, food engineering
Procedia PDF Downloads 2581716 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 751715 Sliver Nanoparticles Enhanced Visible and Near Infrared Emission of Er³+ Ions Doped Lithium Tungsten Tellurite Glasses
Authors: Sachin Mahajan, Ghizal Ansari
Abstract:
TeO2-WO3-Li2O glass doped erbium ions (1mol %) and embedded silver nanoparticles( Ag NPs) has successfully been prepared by melt quenching technique and increasing the heat-treatment duration. The amorphous nature of the glass is determined by X-ray diffraction method, and the presences of silver nanoparticles are confirmed using Transmission Electron Microscopy analysis. TEM image reveals that the Ag NPs are dispersed homogeneously with average size 18 nm. From the UV-Vis absorption spectra, the surface plasmon resonance (SPR) peaks are detected at 550 and 578 nm. Under 980 nm excitation wavelengths, enhancement of red upconversion fluorescence and near-infrared broadband emission around 1550nm of Er3+ ions doped tellurite glasses containing Ag NPs have been observed. The observed enhancement of Er3+ emission is mainly attributed to the local field effects of Ag NPs causes an intensified electromagnetic field around NPs. For observed enhancement involved mechanisms are discussed.Keywords: erbium ions, silver nanoparticle, surface plasmon resonance, upconversion emission
Procedia PDF Downloads 5901714 Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small.Keywords: waste tire pyrolysis char, chemical activation, central composite design (CCD), adsorption capacity, numerical optimization
Procedia PDF Downloads 2251713 Investigation of the Morphology of SiO2 Nano-Particles Using Different Synthesis Techniques
Authors: E. Gandomkar, S. Sabbaghi
Abstract:
In this paper, the effects of variation synthesized methods on morphology and size of silica nanostructure via modifying sol-gel and precipitation method have been investigated. Meanwhile, resulting products have been characterized by particle size analyzer, scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. As result, the shape of SiO2 with sol-gel and precipitation methods was spherical but with modifying sol-gel method we have been had nanolayer structure.Keywords: modified sol-gel, precipitation, nanolayer, Na2SiO3, nanoparticle
Procedia PDF Downloads 2921712 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.Keywords: exciton, refractive index change, extinction ratio, GaAs
Procedia PDF Downloads 5751711 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate
Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad
Abstract:
CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory
Procedia PDF Downloads 117