Search results for: Spatio-temporal analysis
28094 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 15228093 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks
Authors: Walid Fantazi
Abstract:
The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.Keywords: WSN, indexing data, SOA, RIA, geographic information system
Procedia PDF Downloads 25728092 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network
Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup
Abstract:
This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis
Procedia PDF Downloads 11628091 Spatiotemporal Analysis of Land Surface Temperature and Urban Heat Island Evaluation of Four Metropolitan Areas of Texas, USA
Authors: Chunhong Zhao
Abstract:
Remotely sensed land surface temperature (LST) is vital to understand the land-atmosphere energy balance, hydrological cycle, and thus is widely used to describe the urban heat island (UHI) phenomenon. However, due to technical constraints, satellite thermal sensors are unable to provide LST measurement with both high spatial and high temporal resolution. Despite different downscaling techniques and algorithms to generate high spatiotemporal resolution LST. Four major metropolitan areas in Texas, USA: Dallas-Fort Worth, Houston, San Antonio, and Austin all demonstrate UHI effects. Different cities are expected to have varying SUHI effect during the urban development trajectory. With the help of the Landsat, ASTER, and MODIS archives, this study focuses on the spatial patterns of UHIs and the seasonal and annual variation of these metropolitan areas. With Gaussian model, and Local Indicators of Spatial Autocorrelations (LISA), as well as data fusion methods, this study identifies the hotspots and the trajectory of the UHI phenomenon of the four cities. By making comparison analysis, the result can help to alleviate the advent effect of UHI and formulate rational urban planning in the long run.Keywords: spatiotemporal analysis, land surface temperature, urban heat island evaluation, metropolitan areas of Texas, USA
Procedia PDF Downloads 41928090 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 24628089 Spatiotemporal Community Detection and Analysis of Associations among Overlapping Communities
Authors: JooYoung Lee, Rasheed Hussain
Abstract:
Understanding the relationships among communities of users is the key to blueprint the evolution of human society. Majority of people are equipped with GPS devices, such as smart phones and smart cars, which can trace their whereabouts. In this paper, we discover communities of device users based on real locations in a given time frame. We, then, study the associations of discovered communities, referred to as temporal communities, and generate temporal and probabilistic association rules. The rules describe how strong communities are associated. By studying the generated rules, we can automatically extract underlying hierarchies of communities and permanent communities such as work places.Keywords: association rules, community detection, evolution of communities, spatiotemporal
Procedia PDF Downloads 37228088 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)
Authors: A. Bouzekri, H. Benmassaud
Abstract:
Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.Keywords: remote sensing, spatiotemporal, land use, Aurès
Procedia PDF Downloads 33928087 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training
Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li
Abstract:
Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning
Procedia PDF Downloads 26428086 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm
Authors: Muhammad Bilal, Zhongfeng Qiu
Abstract:
Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.Keywords: AEORNET, AOD, SARA, GOCI, Beijing
Procedia PDF Downloads 17428085 Aerosol - Cloud Interaction with Summer Precipitation over Major Cities in Eritrea
Authors: Samuel Abraham Berhane, Lingbing Bu
Abstract:
This paper presents the spatiotemporal variability of aerosols, clouds, and precipitation within the major cities in Eritrea and it investigates the relationship between aerosols, clouds, and precipitation concerning the presence of aerosols over the study region. In Eritrea, inadequate water supplies will have both direct and indirect adverse impacts on sustainable development in areas such as health, agriculture, energy, communication, and transport. Besides, there exists a gap in the knowledge on suitable and potential areas for cloud seeding. Further, the inadequate understanding of aerosol-cloud-precipitation (ACP) interactions limits the success of weather modification aimed at improving freshwater sources, storage, and recycling. Spatiotemporal variability of aerosols, clouds, and precipitation involve spatial and time series analysis based on trend and anomaly analysis. To find the relationship between aerosols and clouds, a correlation coefficient is used. The spatiotemporal analysis showed larger variations of aerosols within the last two decades, especially in Assab, indicating that aerosol optical depth (AOD) has increased over the surrounding Red Sea region. Rainfall was significantly low but AOD was significantly high during the 2011 monsoon season. Precipitation was high during 2007 over most parts of Eritrea. The correlation coefficient between AOD and rainfall was negative over Asmara and Nakfa. Cloud effective radius (CER) and cloud optical thickness (COT) exhibited a negative correlation with AOD over Nakfa within the June–July–August (JJA) season. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model that is used to find the path and origin of the air mass of the study region showed that the majority of aerosols made their way to the study region via the westerly and the southwesterly winds.Keywords: aerosol-cloud-precipitation, aerosol optical depth, cloud effective radius, cloud optical thickness, HYSPLIT
Procedia PDF Downloads 13528084 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change
Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang
Abstract:
As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.Keywords: radon, Northern China, soil gas, earthquake
Procedia PDF Downloads 8528083 An Impairment of Spatiotemporal Gait Adaptation in Huntington's Disease when Navigating around Obstacles
Authors: Naznine Anwar, Kim Cornish, Izelle Labuschagne, Nellie Georgiou-Karistianis
Abstract:
Falls and subsequent injuries are common features in symptomatic Huntington’s disease (symp-HD) individuals. As part of daily walking, navigating around obstacles may incur a greater risk of falls in symp-HD. We designed obstacle-crossing experiment to examine adaptive gait dynamics and to identify underlying spatiotemporal gait characteristics that could increase the risk of falling in symp-HD. This experiment involved navigating around one or two ground-based obstacles under two conditions (walking while navigating around one obstacle, and walking while navigating around two obstacles). A total of 32 participants were included, 16 symp-HD and 16 healthy controls with age and sex matched. We used a GAITRite electronic walkway to examine the spatiotemporal gait characteristics and inter-trail gait variability when participants walked at their preferable speed. A minimum of six trials were completed which were performed for baseline free walk and also for each and every condition during navigating around the obstacles. For analysis, we separated all walking steps into three phases as approach steps, navigating steps and recovery steps. The mean and inter-trail variability (within participant standard deviation) for each step gait variable was calculated across the six trails. We found symp-HD individuals significantly decreased their gait velocity and step length and increased step duration variability during the navigating steps and recovery steps compared with approach steps. In contrast, HC individuals showed less difference in gait velocity, step time and step length variability from baseline in both respective conditions as well as all three approaches. These findings indicate that increasing spatiotemporal gait variability may be a possible compensatory strategy that is adopted by symp-HD individuals to effectively navigate obstacles during walking. Such findings may offer benefit to clinicians in the development of strategies for HD individuals to improve functional outcomes in the home and hospital based rehabilitation program.Keywords: Huntington’s disease, gait variables, navigating around obstacle, basal ganglia dysfunction
Procedia PDF Downloads 44628082 The Study of the Socio-Economic and Environmental Impact on the Semi-Arid Environments Using GIS in the Eastern Aurès, Algeria
Authors: Benmessaoud Hassen
Abstract:
We propose in this study to address the impact of socio-economic and environmental impact on the physical environment, especially their spatiotemporal dynamics in semi-arid and arid eastern Aurès. Including 11 municipalities, the study area spreads out over a relatively large surface area of about 60.000 ha. The hindsight is quite important and is determined by 03 days of analysis of environmental variation spread over thirty years (between 1987 and 2007). The multi-source data acquired in this context are integrated into a geographic information system (GIS).This allows, among other indices to calculate areas and classes for each thematic layer of the 4 layers previously defined by a method inspired MEDALUS (Mediterranean Desertification and Land Use).The database created is composed of four layers of information (population, livestock, farming and land use). His analysis in space and time has been supplemented by a validation of the ground truth. Once the database has corrected it used to develop the comprehensive map with the calculation of the index of socio-economic and environmental (ISCE). The map supports and the resulting information does not consist only of figures on the present situation but could be used to forecast future trends.Keywords: impact of socio-economic and environmental, spatiotemporal dynamics, semi-arid environments, GIS, Eastern Aurès
Procedia PDF Downloads 32728081 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches
Authors: Berhanu Keno Terfa
Abstract:
To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data
Procedia PDF Downloads 20328080 Diffusion Dynamics of Leech-Heart Inter-Neuron Model
Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay
Abstract:
We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis
Procedia PDF Downloads 22928079 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 20728078 Research on Public Space Optimization Strategies for Existing Settlements Based on Intergenerational Friendliness
Authors: Huanhuan Qiang, Sijia Jin
Abstract:
Population aging has become a global trend, and China has entered an aging society, implementing an active aging system focused on home and community-based care. However, most urban communities where elderly people live face issues such as monotonous planning, unappealing landscapes, and inadequate aging infrastructure, which do not meet the requirements for active aging. Intergenerational friendliness and mutual assistance are key components in China's active aging policy framework. Therefore, residential development should prioritize enhancing intergenerational friendliness. Residential and public spaces are central to community life and well-being, offering new and challenging venues to improve relationships among residents of different ages. They are crucial for developing intergenerational communities with diverse generations and non-blood relationships. This paper takes the Maigaoqiao community in Nanjing, China, as a case study, examining intergenerational interactions in public spaces. Based on Maslow's hierarchy of needs and using time geography analysis, it identifies the spatiotemporal behavior characteristics of intergenerational groups in outdoor activities. Then construct an intergenerational-friendly evaluation system and an IPA quadrant model for public spaces in residential areas. Lastly, it explores optimization strategies for public spaces to promote intergenerational friendly interactions, focusing on five aspects: accessibility, safety, functionality, a sense of belonging, and interactivity.Keywords: intergenerational friendliness, demand theory, spatiotemporal behavior, IPA analysis, existing residential public space
Procedia PDF Downloads 1228077 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 13728076 Spatiotemporal Modeling of Under-Five Mortality and Associated Risk Factors in Ethiopia
Authors: Melkamu A. Zeru, Aweke A. Mitiku, Endashaw Amuka
Abstract:
Background: Under-five mortality is the likelihood that a baby will pass away before turning exactly 5 years old, represented as a percentage per 1,000 live births. Exploring the spatial distribution and identifying the temporal pattern is important to reducing under-five child mortality globally, including in Ethiopia. Thus, this study aimed to identify the risk factors of under-five mortality and the spatiotemporal variation in Ethiopian administrative zones. Method: This study used the 2000-2016 Ethiopian Demographic and Health Survey (EDHS) data, which were collected using a two-stage sampling method. A total of 43,029 (10,873 in 2000, 9,861 in 2005, 11,654 in 2011, and 10,641 in 2016) weighted sample under-five child mortality was used. The space-time dynamic model was employed to account for spatial and time effects in 65 administrative zones in Ethiopia. Results: From the result of a general nesting spatial-temporal dynamic model, there was a significant space-time interaction effect [γ = -0.1444, 95 % CI (-0.6680, -0.1355)] for under-five mortality. The increase in the percentages of mothers illiteracy [𝛽 = 0.4501, 95% CI (0.2442, 0.6559)], not vaccinated[𝛽= 0.7681, 95% CI (0.5683, 0.9678)], unimproved water[𝛽= 0.5801, CI (0.3793, 0.7808)] were increased death rates for under five children while increased percentage of contraceptive use [𝛽= -0.6609, 95% CI (-0.8636, -0.4582)] and ANC visit > 4 times [𝛽= -0.1585, 95% CI(-0.1812, -0.1357)] were contributed to the decreased under-five mortality rate at the zone in Ethiopia. Conclusions: Even though the mortality rate for children under five has decreased over time, still there is still higher in different zones of Ethiopia. There exists spatial and temporal variation in under-five mortality among zones. Therefore, it is very important to consider spatial neighbourhoods and temporal context when aiming to avoid under-five mortality.Keywords: under-five children mortality, space-time dynamic, spatiotemporal, Ethiopia
Procedia PDF Downloads 4128075 Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone
Authors: Mostafa Mohammadpour, Christoph Kapeller, Christy Li, Josef Scharinger, Christoph Guger
Abstract:
Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy.Keywords: spike propagation, spike pattern, clustering, SOZ
Procedia PDF Downloads 7328074 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone
Authors: Dedah Ahmed Babou, Nicolas Bez
Abstract:
The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris
Procedia PDF Downloads 15028073 Undernutrition Among Children Below Five Years of Age in Uganda: A Deep Dive into Space and Time
Authors: Vallence Ngabo Maniragaba
Abstract:
This study aimed at examining the variations of undernutrition among children below 5 years of age in Uganda. The approach of spatial and spatiotemporal analysis helped in identifying cluster patterns, hot spots and emerging hot spots. Data from the 6 Uganda Demographic and Health Surveys spanning from 1990 to 2016 were used with the main outcome variable being undernutrition among children <5 years of age. All data that were relevant to this study were retrieved from the survey datasets and combined with the 214 shape files for the districts of Uganda to enable spatial and spatiotemporal analysis. Spatial maps with the spatial distribution of the prevalence of undernutrition, both in space and time, were generated using ArcGIS Pro version 2.8. Moran’s I, an index of spatial autocorrelation, rules out doubts of spatial randomness in order to identify spatially clustered patterns of hot or cold spot areas. Furthermore, space-time cubes were generated to establish the trend in undernutrition as well as to mirror its variations over time and across Uganda. Moreover, emerging hot spot analysis was done to help identify the patterns of undernutrition over time. The results indicate a heterogeneous distribution of undernutrition across Uganda and the same variations were also evident over time. Moran’s I index confirmed spatial clustered patterns as opposed to random distributions of undernutrition prevalence. Four hot spot areas, namely; the Karamoja, the Sebei, the West Nile and the Toro regions were significantly evident, most of the central parts of Uganda were identified as cold spot clusters, while most of Western Uganda, the Acholi and the Lango regions had no statistically significant spatial patterns by the year 2016. The spatio-temporal analysis identified the Karamoja and Sebei regions as clusters of persistent, consecutive and intensifying hot spots, West Nile region was identified as a sporadic hot spot area while the Toro region was identified with both sporadic and emerging hotspots. In conclusion, undernutrition is a silent pandemic that needs to be handled with both hands. At 31.2 percent, the prevalence is still very high and unpleasant. The distribution across the country is nonuniform with some areas such as the Karamoja, the West Nile, the Sebei and the Toro regions being epicenters of undernutrition in Uganda. Over time, the same areas have experienced and exhibited high undernutrition prevalence. Policymakers, as well as the implementers, should bear in mind the spatial variations across the country and prioritize hot spot areas in order to have efficient, timely and region-specific interventions.Keywords: undernutrition, spatial autocorrelation, hotspots analysis, geographically weighted regressions, emerging hotspots analysis, under-fives, Uganda
Procedia PDF Downloads 9128072 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies
Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan
Abstract:
The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping
Procedia PDF Downloads 10128071 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 9528070 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores
Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño
Abstract:
In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.Keywords: bifurcation, heteroclinic orbits, steady state, traveling wave
Procedia PDF Downloads 30528069 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 30528068 Improving Law Enforcement Strategies Through Geographic Information Systems: A Spatio-Temporal Analysis of Antisocial Activities in Móstoles (2022)
Authors: Daniel Suarez Alonso
Abstract:
This study has tried to focus on the alternatives offered to police institutions by the implementation of Geographic Information systems. Providing operational police commanders with effective and efficient tools, providing analytical capacity to reduce criminal opportunities, must be a priority. Given the intimate connection of crimes and infractions to the environment, law enforcement institutions must respond proactively to changing circumstances of anti-norm behaviors. To this end, it has been intended to analyze the antisocial spatial distribution of the city of Móstoles, trying to identify those spatiotemporal patterns that occur to anticipate their commission through the planning of dynamic preventive strategies. The application of GIS offers alternative analytical approaches to the different problems that underlie the development of life in society, focusing resources on those places with the highest concentration of incidents.Keywords: data analysis, police organizations, police prevention, geographic information systems
Procedia PDF Downloads 5228067 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation
Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani
Abstract:
The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza
Procedia PDF Downloads 34828066 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover
Authors: Javed Mallick
Abstract:
In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islandsKeywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot
Procedia PDF Downloads 8028065 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa
Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes
Abstract:
The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.Keywords: crop protection, pesticide fate, tropics, insecticide resistance
Procedia PDF Downloads 146