Abstracts | Pharmacological and Pharmaceutical Sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1205

World Academy of Science, Engineering and Technology

[Pharmacological and Pharmaceutical Sciences]

Online ISSN : 1307-6892

935 Prevailing Clinical Evidence on Medicinal Hemp (Cannabis Sativa L.)

Authors: Siti Hajar Muhamad Rosli, Xin Yi Lim, Terence Yew Chin Tan, Muhammad nor Farhan Sa’At, Syazwani Sirdar Ali, Ami Fazlin Syed Mohamed

Abstract:

A growing interest on therapeutic benefits of hemp (Cannabis sativa subsp. sativa) is evident in the pharmaceutical market, attributed to its lower levels of psychoactive constituent delta-9-tetrahydronannabidiol (THC). Deemed as a legal and safer alternative to its counterpart marijuana, the use of medicinal hemp is highly debatable as current scientific evidence on the efficacy for clinical use is yet to be established This study was aimed to provide an overview of the current landscape of hemp research, through recent clinical findings specific to the pharmacological properties of the hemp plant and its derived compounds. A systematic search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis-ScR (PRISMA) checklist on electronic databases (MEDLINE, OVID, Cochrane Library Central, and Clinicaltrials.gov) for articles published from 2009 to 2019. With predetermined inclusion criteria, all human trials with hemp intervention were included. A total of 18 human trials were identified, investigating therapeutic effects on the neuronal, gastrointestinal, musculoskeletal and immune system, with sample sizes ranging from one to 194 subjects. Three randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) consumption significantly improved spontaneous bowel movement in functional constipation. The use of commercial cannabidiol (CBD) sourced from hemp suggested benefits in cannabis dependence, epilepsy, and anxiety disorders. However, there was insufficient evidence to suggest analgesic or anxiolytics effects of hemp being equivalent to marijuana. All clinical trials reviewed varied in terms of test item formulation and standardisation, which made it challenging to confirm overall efficacy for a specific disease or condition. Published efficacy data on hemp are still at a preliminary level, with limited high quality clinical evidence for any specific therapeutic indication. With multiple variants of this plant having different phytochemical and bioactive compounds, future empirical research should focus on uniformity in experimental designs to further strengthen the notion of using medicinal hemp.

Keywords: cannabis, complementary medicine, hemp, herbal medicine.

Procedia PDF Downloads 94
934 Formulation of Extended-Release Ranolazine Tablet and Investigation Its Stability in the Accelerated Stability Condition at 40⁰C and 75% Humidity

Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani

Abstract:

Formulation of Ranolazine in the form of extended-release tablet in 500 mg dosage form was performed using Eudragit L100-55 as a retarding agent. Drug-release profiles were investigated in comparison with the reference Ranexa extended-release 500 mg tablet. F₂ and f₁ were calculated as 64.16 and 8.53, respectively. According to Peppas equation, the release of drug is controlled by diffusion (n=0.5). The tablets were put into accelerated stability conditions (40 °C, 75% humidity) for 3 and 6 months. The dissolution release profiles and other physical and chemical characteristics of the tablets confirmed the robustness and stability of formulation in this condition.

Keywords: drug release, extended-release tablet, ranolazine, stability

Procedia PDF Downloads 124
933 Time-Dependent Modulation on Depressive Responses and Circadian Rhythms of Corticosterone in Models of Melatonin Deficit

Authors: Jana Tchekalarova, Milena Atanasova, Katerina Georgieva

Abstract:

Melatonin deficit can cause a disturbance in emotional status and circadian rhythms of the endocrine system in the body. Both pharmacological and alternative approaches are applied for correction of dysfunctions driven by changes in circadian dynamics of many physiological indicators. In the present study, we tested and compare the beneficial effect of agomelatine (40 mg/kg, i.p. for 3 weeks) and endurance training on depressive behavior in two models of melatonin deficit in rat. The role of disturbed circadian rhythms of plasma melatonin and corticosterone secretion in the mechanism of these treatments was also explored. The continuous exercise program attenuated depressive responses associated with disrupted diurnal rhythm of home-cage motor activity, anhedonia in the sucrose preference test, and despair-like behavior in the forced swimming test were attenuated by agomelatine exposed to chronic constant light (CCL) and long-term exercise in pinealectomized rats. Parallel to the observed positive effect on the emotional status, agomelatine restored CCL-induced impairment of circadian patterns of plasma melatonin but not that of corticosterone. In opposite, exercise training diminished total plasma corticosterone levels and corrected its flattened pattern while it was unable to correct melatonin deficit in pinealectomy. These results suggest that the antidepressant-like effect of pharmacological and alternative approach might be mediated via two different mechanism, correction of the disturbed circadian rhythm of melatonin and corticosterone, respectively. Therefore, these treatment approaches might have a potential therapeutic application in different subpopulations of people characterized by a melatonin deficiency. This work was supported by the National Science Fund of Bulgaria (research grant # № DN 03/10; DN# 12/6).

Keywords: agomelatine, exercise training, melatonin deficit, corticosterone

Procedia PDF Downloads 91
932 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 103
931 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 99
930 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica

Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy

Abstract:

In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.

Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies

Procedia PDF Downloads 87
929 Using Design Thinking Principles to Improve Patients Experiences in Two Outpatient Pharmacies in Asir Region, Saudi Arabia

Authors: Dalia Almaghaslah

Abstract:

Design thinking approach; empathize, define, ideate prototype, test, implement, was used to assess outpatient experiences in two hospital pharmacies in the Asir region, Saudi Arabia. Semi-structured interviews were conducted with 40 patients. The data were analyzed using thematic analysis. The findings suggested that patients were generally satisfied with pharmaceutical services provided in both pharmacies. Pharmacists were found to have enough knowledge, good attitude, and efficient communication and counselling skills. Non-pharmacy-related factors such as cultural factors (gender segregation), long waiting times, uncomfortable waiting areas, lack of electronic prescribing, number waiting system were found to have a negative impact on patients' experiences and satisfaction. Prototypes will be used to test the effects of implementing the electronic system in Al -mahal hospital and to test changing the physical layout of the waiting area in Asir hospital.

Keywords: design thinking, hospital pharmacy, patient satisfaction, Saudi Arabia

Procedia PDF Downloads 111
928 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 90
927 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer

Authors: Nusaiba Al-Nemrawi, Belal Al-Husein

Abstract:

Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.

Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer

Procedia PDF Downloads 69
926 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution

Authors: Yasmin Begum Mohammed

Abstract:

Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.

Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique

Procedia PDF Downloads 271
925 Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice Using an Aqueous Extract

Authors: Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh, Ahed Zyoud

Abstract:

Phytochemical Investigation and Diuretic Activity of the Palestinian Crataegus aronia in Mice using an Aqueous Extract Division of Physiology, Pharmacology and Toxicology Faculty of Medicine and Health Sciences An- Najah National University Nablus- Palestine Belal Rahhal, Isra Taha, Insaf Najajreh, Waleed Basha, Hamzeh Alzabadeh and Ahed Zyoud Purpose: Throughout history, various natural materials were used as remedies for treatment of various diseases, and recently a vastly growing and renewed interest in herbal medicine is witnessed globally. In Palestinian folk medicine, Crataegus aronia is used as a diuretic and for treatment of hypertension. This study aimed to assess the preliminary phytochemical properties and the diuretic effect of the aqueous extracts of this plant in mice after its intraperitonial administration. Methods: It is an experimental trial applied on mice (n=8, Male, CD-1, weight range: [25-30 gram]), which are divided into two groups (4 in each). The first group administered with the plant extract (500 mg/kg) , and the second with normal saline as negative control group. Then urine output and electrolyte contents were quantified up to 6 hours for the three groups and then compared to the control one. Results: Preliminary phytochemical screening reveals the presence of tannins, alkaloids and flavoniods as major phytoconstituents in aqueous extract. Significant diuresis was noted in those received the aqueous extract of Crataegus aronia (p < 0.05) compared to controls. Moreover, aqueous extract had an acidic pH and a mild increase in the electrolyte excretion (Na, K). Conclusions: Our results revealed that Crataegus aronia aqueous extract has a potential diuretic effect. Further studies are needed to evaluate this diuretic effect in the relief of diseases characterized by volume overload. Keywords: C. aronia, furosemide, diuresis, mice, medicinal plants.

Keywords: medicinal plants, diuretic activity, mice, C. aronia, , furosemide, , Phytochemical Investigation

Procedia PDF Downloads 168
924 Moringa olifera Curate The Toxic Potential of CuO Nanoparticles in Oreochromis mossambicus

Authors: Farhat Jabeen, Muhammad Asad

Abstract:

The study assessed the curative potential of Moringa olifera seeds against copper oxide nanoparticles induced toxicity in Oreochromis mossambicus. In order to investigate the curative potential of M. olifera seeds, firstly we examine its chemical composition, secondary metabolites, and bioactive compounds including hydroxyl-cinnamic acids, flavanols and hydroxybenzoic acids through standard methods and high performance liquid chromatography. In current study, the potential sub-lethal toxic dose of CuO-NPs (0.12 mg/l) was investigated through pilot experiment and three non-lethal doses (low=32, medium=48 and high=96 mg/l) of M. olifera were selected on the basis of its LC50 value for O. mossambicus. The experimental fish, O. mossambicus (n=100 of approximately 20 g each) were procured from Manawan Fisheries Complex, Lahore, and acclimatized for two weeks in glass aquaria. Experiment was conducted in accordance with the guidelines of Institutional Animal Ethics Committee, Government College University Faisalabad, Pakistan. During acclimatization and experimental period, fish received the commercial fish feed at 2.5% body weight daily. In order to assess the curative effect of M. olifera against CuO NPs induced toxicity, O. mossambicus were randomly divided into five groups and were designated as control (C) without any treatment, positive control (G*) exposed to potential toxic dose of CuO-NPs at 0.12 mg/l, and three treated groups namely G1, G2, and G3 co-treated with 0.12 mg/l of CuO-NPs plus different doses of M. olifera seed extract at 32, 48, and 96 mg/l, respectively for 56 days. Fish were exposed to waterborne CuO NPs and M. olifera seed extract. CuO-NPs treatment was ceased after 28 days but the doses of M. olifera were continued for 56 days. Blood was taken after 28 and 56 days through caudal venipuncture. Liver and intestine were taken for oxidative stress and histological studies after 56 days. In M. olifera seeds, moisture contents, crude protein, lipids, carbohydrates and ash were recorded as 3.8, 37.83, 32.52, 46.12, and 7.75%, respectively on dry weight basis. Total energy was recorded as 627.36 kcal/100g. Qualitative analysis of M. olifera seeds showed the presence of terpenoids, saponins, flavonoids, alkaloids and phenolics, while its quantitative analysis showed the considerable amount of total phenolics, flavonoids, saponins, and alkaloids as 134.75, 170.15, 1.57, and 0.4 µg/mg, respectively. Analysis of bioactive compounds in M. olifera seeds showed the presence of hydroxy-cinnamic acids (6.07 µg/ml), flavanols (71.72 µg/ml), and hydroxyl benzoic acids (97.82 µg/ml). The results showed that M. oliefera seed extract at 48 and 56 mg/l was able to cure against the toxic effects of CuO-NPs. The significant changes were observed in G* and G1 for sero-hepatic enzymes, anti-oxidants and histological profile. The investigations of this study showed that M. olifera is a good curative agent against potential induced toxicity of CuO-NPs in O. mossambicus. The curative effect of M. olifera is attributed to the presence of higher amount of secondary metabolites and bioactive compounds. This study suggested the use of M. olifera to curate different ailments in fish and other organisms.

Keywords: CuO nanoparticles, curative, Moringa olifera, Oreochromis mossambicus

Procedia PDF Downloads 106
923 Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles

Authors: Rama Devi Kyatham, D. Ashok, K. S. K. Rao Patnaik, Raju Bathula

Abstract:

We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods.

Keywords: pyrazoles, validation, resistant microbial strains, anti-microbial activities

Procedia PDF Downloads 136
922 Morphological Differentiation and Temporal Variability in Essential Oil Yield and Composition among Origanum vulgare ssp. hirtum L., Origanum onites L. and Origanum x intercedens from Ikaria Island (Greece)

Authors: A.Assariotakis, P. Vahamidis, P. Tarantilis, G. Economou

Abstract:

Greece, due to its geographical location and the particular climatic conditions, presents high biodiversity of Medicinal and Aromatic Plants. Among them, the genus Origanum not only presents a wide distribution, but it also has great economic importance. After extensive surveys in Ikaria Island (Greece), 3 species of the genus Origanum were identified, namely, Origanum vulgare ssp. hirtum (Greek oregano), Origanum onites (Turkish oregano) and Origanum x intercedens (hybrid), a naturally occurring hybrid between O. hirtum and O. onites. The purpose of this study was to determine their morphological as well as their temporal variability in essential oil yield and composition under field conditions. For this reason, a plantation of each species was created using vegetative propagation and was established at the experimental field of the Agricultural University of Athens (A.U.A.). From the establishment year and for the following two years (3 years of observations), several observations were taken during each growing season with the purpose of identifying the morphological differences among the studied species. Each year collected plant (at bloom stage) material was air-dried at room temperature in the shade. The essential oil content was determined by hydrodistillation using a Clevenger-type apparatus. The chemical composition of essential oils was investigated by Gas Chromatography-Mass Spectrometry (GC – MS). Significant differences were observed among the three oregano species in terms of plant height, leaf size, inflorescence features, as well as concerning their biological cycle. O. intercedens inflorescence presented more similarities with O. hirtum than with O. onites. It was found that calyx morphology could serve as a clear distinction feature between O. intercedens and O. hirtum. The calyx in O. hirtum presents five isometric teeth whereas in O. intercedens two high and three shorter. Essential oil content was significantly affected by genotype and year. O. hirtum presented higher essential oil content than the other two species during the first year of cultivation, however during the second year the hybrid (O. intercedens) recorded the highest values. Carvacrol, p-cymene and γ-terpinene were the main essential oil constituents of the three studied species. In O. hirtum carvacrol content varied from 84,28 - 93,35%, in O. onites from 86,97 - 91,89%, whereas in O. intercedens it was recorded the highest carvacrol content, namely from 89,25 - 97,23%.

Keywords: variability, oregano biotypes, essential oil, carvacrol

Procedia PDF Downloads 107
921 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 112
920 Beneficial Effect of Biotin in Combination with Canagliflozin on High Fat Diet Induced Diabetes in Rats

Authors: Rayhana Begum, HongBin Wang, Nur Alam Siddiquee, Md.Yasin Ahmed

Abstract:

Biotin treatment has significant effects on blood glucose, and pharmacological doses of biotin improve hyperglycemia. The present study was aimed to investigate the efficacy and safety of biotin in combination with canagliflozin in improving glycemic control on High Fat Diet-induced diabetes in Rats. Thirty male rats were divided into five groups (six rats /group): control, high fat diet (HFD), canagliflozin (CAG), biotin (BIO), and CAG + BIO. The treatments with CAG and /or BIO significantly reduced the body weight gain, blood glucose and HbA1c levels, whereas CAG in combination with BIO revealed greater glycemic improvement than CAG monotherapy. The treatment with CAG and /or BIO causes significant change in lipid profile and CK level while the treatment with CAG in combination with BIO showed better results as compared with CAG monotherapy. Furthermore, combination of biotin with CAG improved the pancreatic and cardiac damage when compared with other treated groups.

Keywords: canagliflozin, biotin, HbA1c, lipid profile

Procedia PDF Downloads 124
919 Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives

Authors: Hossein Mostafavi

Abstract:

A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive.

Keywords: gallic acid derivatives, antibacterial, antibiotics, inhibition

Procedia PDF Downloads 106
918 Ruminal Fermentation of Biologically Active Nitrate- and Nitro-Containing Forages

Authors: Robin Anderson, David Nisbet

Abstract:

Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are biologically active chemicals that can accumulate naturally in rangeland grasses forages consumed by grazing cattle, sheep and goats. While toxic to livestock if accumulations and amounts consumed are high enough, particularly in animals having no recent exposure to the forages, these chemicals are known to be potent inhibitors of methane-producing bacteria inhabiting the rumen. Consequently, there is interest in examining their potential use as anti-methanogenic compounds to decrease methane emissions by grazing ruminants. Presently, rumen microbes, collected freshly from a cannulated Holstein cow maintained on 50:50 corn based concentrate:alfalfa diet were mixed (10 mL fluid) in 18 x 150 mm crimp top tubes with 0.5 of high nitrate-containing barley (Hordeum vulgare; containing 272 µmol nitrate per g forage dry matter), and NPA- or NPOH- containing milkvetch forages (Astragalus canadensis and Astragalus miser containing 80 and 174 soluble µmol NPA or NPOH/g forage dry matter respectively). Incubations containing 0.5 g alfalfa (Medicago sativa) were used as controls. Tubes (3 per each respective forage) were capped and incubated anaerobically (using oxygen free carbon dioxide) for 24 h at 39oC after which time amounts of total gas produced were measured via volume displacement and headspace samples were analyzed by gas chromatography to determine concentrations of hydrogen and methane. Fluid samples were analyzed by gas chromatography to measure accumulations of fermentation acids. A completely randomized analysis of variance revealed that the nitrate-containing barley and both the NPA- and the NPOH-containing milkvetches significantly decreased methane production, by > 50%, when compared to methane produced by populations incubated similarly with alfalfa (70.4 ± 3.6 µmol/ml incubation fluid). Accumulations of hydrogen, which are typically increased when methane production is inhibited, by incubations with the nitrate-containing barley and the NPA- and NPOH-containing milkvetches did not differ from accumulations observed in the alfalfa controls (0.09 ± 0.04 µmol/mL incubation fluid). Accumulations of fermentation acids produced in the incubations containing the high-nitrate barley and the NPA- and NPOH-containing milkvetches likewise did not differ from accumulations observed in incubations containing alfalfa (123.5 ± 10.8, 36.0 ± 3.0, 17.1 ± 1.5, 3.5 ± 0.3, 2.3 ± 0.2, 2.2 ± 0.2 µmol/mL incubation fluid for acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate, respectively). This finding indicates the microbial populations did not compensate for the decreased methane production via compensatory changes in production of fermentative acids. Stoichiometric estimation of fermentation balance revealed that > 77% of reducing equivalents generated during fermentation of the forages were recovered in fermentation products and the recoveries did not differ between the alfalfa incubations and those with the high-nitrate barley or the NPA- or NPOH-containing milkvetches. Stoichiometric estimates of amounts of hexose fermented similarly did not differ between the nitrate-, NPA and NPOH-containing incubations and those with the alfalfa, averaging 99.6 ± 37.2 µmol hexose consumed/mL of incubation fluid. These results suggest that forages containing nitrate, NPA or NPOH may be useful to reduce methane emissions of grazing ruminants provided risks of toxicity can be effectively managed.

Keywords: nitrate, nitropropanol, nitropropionic acid, rumen methane emissions

Procedia PDF Downloads 97
917 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria

Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake

Abstract:

Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.

Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship

Procedia PDF Downloads 104
916 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 124
915 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture

Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne

Abstract:

Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.

Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization

Procedia PDF Downloads 107
914 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin

Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes

Abstract:

Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.

Keywords: vildagliptin, spray congealing, microparticles, controlled release

Procedia PDF Downloads 98
913 Molecular Profiling and Potential Bioactive Characteristics of Endophytic Fungi Isolated from Leptadenia Pyrotechnica

Authors: Walaa Al-Maghraby

Abstract:

Endophytes are organisms that colonize internal plant tissues without causing apparent harm to their host. Almost all groups of microorganisms have been found in endophytic association with plants may be fungi. They stimulate the production of secondary metabolites with a diverse range of biological activities. Leptadenia pyrotechnica is a more or less leafless, erect shrub with straight stems which is highly distributed in Saudi Arabia. Four endophytes fungi were isolated from Leptadenia pyrotechnica and identified using 18S ribosomal RNA sequences, which revealed four fungi genuses, namely Aspergillus terreus; Aspergillus welwitschiae; Aspergillus fumigatus and Aspergillus flavus. In this present study, four endophytic fungi from Leptadenia pyrotechnica were used for obtaining crude aqueous and ethyl acetate extracts for antimicrobial screening against 6 human pathogens, the antibacterial tests presented satisfactory results, where the pathogenic bacteria were inhibited by the four extracts tested, except for Escherichia coli that was inhibited by all extracts except ethyl acetate extract of Aspergillus terreus. Analysis of variance showed that the extract produced by endophyte Leptadenia pyrotechnica was the most effective against all bacteria, either gram-negative or positive. However, the extract was not efficient against pathogenic fungi. Therefore, this study indicates that endophytes from medicinal plant Leptadenia pyrotechnica could be potential sources of antibacterial substances.

Keywords: antimicrobial activity, Aspergillus sp, endophytes, Leptadenia pyrotechnica

Procedia PDF Downloads 119
912 Neuroprotection against N-Methyl-D-Aspartate-Induced Optic Nerve and Retinal Degeneration Changes by Philanthotoxin-343 to Alleviate Visual Impairments Involve Reduced Nitrosative Stress

Authors: Izuddin Fahmy Abu, Mohamad Haiqal Nizar Mohamad, Muhammad Fattah Fazel, Renu Agarwal, Igor Iezhitsa, Nor Salmah Bakar, Henrik Franzyk, Ian Mellor

Abstract:

Glaucoma is the global leading cause of irreversible blindness. Currently, the available treatment strategy only involves lowering intraocular pressure (IOP); however, the condition often progresses despite lowered or normal IOP in some patients. N-methyl-D-aspartate receptor (NMDAR) excitotoxicity often occurs in neurodegeneration-related glaucoma; thus it is a relevant target to develop a therapy based on neuroprotection approach. This study investigated the effects of Philanthotoxin-343 (PhTX-343), an NMDAR antagonist, on the neuroprotection of NMDA-induced glaucoma to alleviate visual impairments. Male Sprague-Dawley rats were equally divided: Groups 1 (control) and 2 (glaucoma) were intravitreally injected with phosphate buffer saline (PBS) and NMDA (160nM), respectively, while group 3 was pre-treated with PhTX-343 (160nM) 24 hours prior to NMDA injection. Seven days post-treatments, rats were subjected to visual behavior assessments and subsequently euthanized to harvest their retina and optic nerve tissues for histological analysis and determination of nitrosative stress level using 3-nitrotyrosine ELISA. Visual behavior assessments via open field, object, and color recognition tests demonstrated poor visual performance in glaucoma rats indicated by high exploratory behavior. PhTX-343 pre-treatment appeared to preserve visual abilities as all test results were significantly improved (p < 0.05). H&E staining of the retina showed a marked reduction of ganglion cell layer thickness in the glaucoma group; in contrast, PhTX-343 significantly increased the number by 1.28-folds (p < 0.05). PhTX-343 also increased the number of cell nuclei/100μm2 within inner retina by 1.82-folds compared to the glaucoma group (p < 0.05). Toluidine blue staining of optic nerve tissues showed that PhTX-343 reduced the degeneration changes compared to the glaucoma group which exhibited vacuolation overall sections. PhTX-343 also decreased retinal 3- nitrotyrosine concentration by 1.74-folds compared to the glaucoma group (p < 0.05). All results in PhTX-343 group were comparable to control (p > 0.05). We conclude that PhTX-343 protects against NMDA-induced changes and visual impairments in the rat model by reducing nitrosative stress levels.

Keywords: excitotoxicity, glaucoma, nitrosative stress , NMDA receptor , N-methyl-D-aspartate , philanthotoxin, visual behaviour

Procedia PDF Downloads 102
911 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model

Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob

Abstract:

Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.

Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus

Procedia PDF Downloads 123
910 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphine Derivatives Designed as Potential Anticonvulsant Agents

Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov

Abstract:

In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic acid (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorometric analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA (H4-CA, H5-CA, and H7-CA) and three KA (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgments: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".

Keywords: hemorphins, SPSS, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry

Procedia PDF Downloads 125
909 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles

Authors: Antonina A. Shumakova, Sergey A. Khotimchenko

Abstract:

The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.

Keywords: absorption, cadmium, engineered nanomaterials, lead

Procedia PDF Downloads 66
908 The Influence of Gender on Itraconazole Pharmacokinetic Parameters in Healthy Adults

Authors: Milijana N. Miljkovic, Viktorija M. Dragojevic-Simic, Nemanja K. Rancic, Vesna M. Jacevic, Snezana B. Djordjevic, Momir M. Mikov, Aleksandra M. Kovacevic

Abstract:

Itraconazole (ITZ) is a weak base and extremely lipophilic compound, with water solubility as a rate-limiting step in its absorption from the gastrointestinal tract. Its absolute bioavailability, about 55%, is maximal when its oral formulation, capsules, are taken immediately after a full meal. Peak plasma concentrations (Cmax) are reached within 2 to 5 hrs after their administration. ITZ undergoes extensive hepatic metabolism by human CYP3A4 isoenzyme and more than 30 different metabolites have been identified. One of the main ones is hydroxyitraconazole (HITZ), in which plasma concentrations are almost twice higher than those of ITZ. Gender differences in drug PK (Pharmacokinetics) have already been recognized, but variations in metabolism are believed to be their major cause. The aim of the study was to investigate the influence of gender on ITZ PK parameters after administration of oral capsule formulation, following 100 mg single dosing in healthy adult volunteers under fed conditions. The single-center, open-label PK study was performed. PK analyses included PK parameters obtained after a single 100 mg dose administration of itraconazole capsules to 48 females and 66 males. Blood samples were collected at pre-dose and up to 72.0 h after administration (1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 9.0, 12.0, 24.0, 36.0 and 72.0 hrs). The calculated pharmacokinetic parameters, based on the plasma concentrations of itraconazole and hydroxyitraconazole, were Cmax, AUClast, and AUCtot. Plasma concentrations of ITZ and HITZ were determined using a validated liquid chromatographic method with mass spectrometric detection, while pharmacokinetic parameters were estimated using non-compartmental methods. The pharmacokinetic analyses were performed using Kinetica software version 5.0. The mean value of ITZ Cmaxmen was 74.79 ng/ml, and Cmaxwomen was 51.291 ng/ml (independent samples test; p = 0.005). Hydroxyitraconazole had a mean value of Cmaxmen 106.37 ng/ml, and the mean value Cmaxwomen was 70.05 ng/ml. Women had, on average, lower AUClast and Cmax than men. AUClastmen for ITZ was 736.02 ng/mL*h and AUClastwomen was 566.62 ng/mL*h, while AUClastmen for HITZ was 1154.80 was ng/mL*h and AUClastwomen for HITZ was 708.12 ng/mL*h (independent samples test; p = 0.033). The mean values of ITZ AUCtotmen were 884.73 ng/mL*h and AUCtotwomen was 685.10 ng/mL*h. AUCtotmen for HITZ was 1290.41 ng/mL*h, while AUCtotwomen for HIZT was 788.60 ng/mL*h (p < 0.001). The results could point out to lower oral bioavailability of ITZ in women, since values of Cmax, AUClast, and AUCtot of both ITZ and HITZ were significantly lower in women than in men, respectively. The reason may be higher expression and activity of CYP3A4 in women than in men, but there also may be differences in other PK parameters. High variability of both ITZ and HITZ concentrations in both genders confirmed that ITZ is a highly variable drug. Further examinations of its PK are needed to justify strategies for therapeutic drug monitoring in patients treated by this antifungal agent.

Keywords: itraconazole, gender, hydroxyitraconazole, pharmacokinetics

Procedia PDF Downloads 111
907 Medical Authorizations for Cannabis-Based Products in Canada: Sante Cannabis Data on Patient’s Safety and Treatment Profiles

Authors: Rihab Gamaoun, Cynthia El Hage, Laura Ruiz, Erin Prosk, Antonio Vigano

Abstract:

Introduction: Santé Cannabis (SC), a Canadian medical cannabis-specialized group of clinics based in Montreal and in the province of Québec, has served more than 5000 patients seeking cannabis-based treatment prescription for medical indications over the past five years. Within a research frame, data on the use of medical cannabis products from all the above patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to gather information on the profiles of both patients and prescribed medical cannabis products at SC clinics and to assess the safety of medical cannabis among Canadian patients. Methods: Using a retrospective analysis of the database, records of 2585 patients who were prescribed medical cannabis products for therapeutic purposes between 01-November 2017 and 04-September 2019 were included. Patients’ demographics, primary diagnosis, route of administration, and chemovars recorded at the initial visits were investigated. Results: At baseline: 9% of SC patients were female, with a mean age of 57 (SD= 15.8, range= [18-96]); Cannabis products were prescribed mainly for patients with a diagnosis of chronic pain (65.9% of patients), cancer (9.4%), neurological disorders (6.5%), mood disorders (5.8 %) and inflammatory diseases (4.1%). Route of administration and chemovars of prescribed cannabis products were the following: 96% of patients received cannabis oil (51% CBD rich, 42.5% CBD:THC); 32.1% dried cannabis (21.3% CBD:THC, 7.4% THC rich, 3.4 CBD rich), and 2.1% oral spray cannabis (1.1% CBD:THC, 0.8% CBD rich, 0.2% THC rich). Most patients were prescribed simultaneously, a combination of products with different administration routes and chemovars. Safety analysis is undergoing. Conclusion: Our results provided initial information on the profile of medical cannabis products prescribed in a Canadian population and the experienced adverse events over the past three years. The Santé Cannabis database represents a unique opportunity for comparing clinical practices in prescribing and titrating cannabis-based medications across different centers. Ultimately real-world data, including information about safety and effectiveness, will help to create standardized and validated guidelines for choosing dose, route of administration, and chemovars types for the cannabis-based medication in different diseases and indications.

Keywords: medical cannabis, real-world data, safety, pharmacovigilance

Procedia PDF Downloads 83
906 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 106