World Academy of Science, Engineering and Technology
[Mechanical and Materials Engineering]
Online ISSN : 1307-6892
344 High Temperature Fretting Fatigue Behavior of Ti Alloys
Authors: Jayaprakash Murugesan
Abstract:
Fretting fatigue is an important phenomenon in reducing the fatigue strength of a component. It occurs when two components are in contact under load, and there is a small-scale relative sliding between the two contacting bodies due to oscillatory or vibratory, or cyclic loading. Fretting fatigue failures are common in engineering applications, especially in automotive, railway, aerospace, and power generation. There are numerous research works on fretting fatigue, where the researchers have attempted to understand the fretting fatigue mechanism by investigating the effect of fretting fatigue variables, crack nucleation, crack propagation behavior etc. However, due to the complex interactions of many variables, the fretting fatigue problem remains unsolved. In the present study, fretting fatigue behavior of near-alpha Ti alloy and Ti-6Al-4 V alloy has been investigated at room temperature, high temperature under different contact pressures. Also, the effect of introducing porous material at the contact to enhance the fretting fatigue strength has been investigated. In addition to the experimental study, numerical analysis was also carried out to understand the effect of stress at the contact on fretting fatigue strength and to develop a model for fretting fatigue strength prediction. The results showed that the temperature has a significant effect on the fretting fatigue behavior of Ti alloys. The fretting fatigue strength was significantly enhanced by introducing porous materials at the contact interface. The results obtained were discussed based on the fretting damage that occurred at the contact interface, stress distribution at the contact interface, and fracture surface examination.Keywords: fatigue, fretting fatigue, Ti alloys, microstructure
Procedia PDF Downloads 0343 Integrating Traditional Welding Techniques with Additive Manufacturing: Challenges, Opportunities, and Applications
Authors: Muideen Olamilekan Akintande
Abstract:
The integration of traditional welding techniques with additive manufacturing (AM) has the potential to revolutionize the manufacturing industry. This paper explores the challenges, opportunities, and applications of integrating traditional welding techniques with AM. The paper discusses the fundamental principles of welding and AM, examines the current state of knowledge on the integration of these two processes, and highlights the benefits and limitations of this integration.Keywords: additive, welding, heat, metal, innovation, manufacturing, additive manufacturing
Procedia PDF Downloads 17342 Influence of the Orientation of a Fabric Being Formed with a Tool Having an Angle of Attack of 75°
Authors: Aghiles Khris, Allaoui Samir, Ould Ouali Mouhand, Boudedja Amar, Bencherif Mokhtar
Abstract:
The increasing complexity of composite parts in order to satisfy manufacturers' requirements and environmental standards makes the study of defects in fabrics during shaping a subject of great interest for academics and industrialists. In this work, we are interested in the study of the effect of fabric orientation on the creation of defects during forming of a Taffeta rowing 500. Two orientations have been considered 22.5° and 45°. The tool with a rectangular shape has an angle of attack of a ridge inclined by an angle of 75°. The experimental tests were carried out on a specific device designed and built in our laboratory. To complete the study, we have used two values of blank-holder pressure with two different configurations of the springs. The analysis of the formed defects and the shearing between warp and weft showed the influence of the orientation of the taffeta and the applied pressure.Keywords: fabric forming, orientation, defects, taffeta, pressure, shearing
Procedia PDF Downloads 16341 Optimizing Material Behaviour Model Parameters Calibration Using Python
Authors: Mokhtar Bencherif, Amar Boudedja, Rabah Ferhoum, Madjid Almansba
Abstract:
This research focuses on the calibration of a mechanical behavior model for austenitic stainless steel, a material renowned for its versatility and performance in engineering applications. The model accounts for the coupled effects of plasticity and damage mechanisms, providing a predictive framework for understanding the material's response under complex loading conditions. To overcome the time-intensive nature of traditional calibration methods, we developed and employed a set of Python scripts tailored to automate and optimize the calibration process. These scripts, integrated with Abaqus, enable efficient data processing and parameter adjustment, significantly reducing computational effort while improving the robustness of the model. The proposed methodology ensures a higher level of precision and repeatability in capturing the material's intricate behavior, offering a streamlined approach to mechanical model optimization. This study underscores the potential of combining Python scripting with advanced finite element tools to enhance calibration workflows in material science research. While detailed results and validations are forthcoming, this study aims to highlight the innovative methodology, its implementation, and its impact on advancing the reliability of behavior models for stainless steel. By integrating automation with finite element simulations, this approach supports the development of high-performance materials for diverse engineering applications.Keywords: stainless steel, mechanical behavior, model calibration, python scripts, optimization workflows
Procedia PDF Downloads 15340 Elaboration and Characterization of a Recycled Polycarbonate Reinforced Composites
Authors: Boudedja Amar, Bencherif Mokhtar, Almansba Madjid, Ferhoum Rabah
Abstract:
This study focuses on the development and characterization of a composite using a thermosetting matrix like epoxy and unsaturated polyester and reinforced with recycled polycarbonate. The aim is to optimize the mechanical and thermal properties of these materials for industrial applications. Recycled Polycarbonate reinforcements were obtained from broken neon cover plates which were then crushed to different sizes in terms of particle size and shapes. Reinforcement-matrix adhesion is enhanced by chemical and physical treatments adapted to each resin. The composites are processed by compression molding and vacuum infusion, adjusting the reinforcement/resin ratio to between 10 and 40% by weight. Characterization tests, including tensile, bending, impact and fatigue tests, were then carried out to identify the mechanical properties of each material configuration, while thermal stability is studied by DSC and TGA. reinforcement -matrix interfaces are analyzed using a high-resolution microscope to examine the material's internal cohesion and load transfer mechanism. The results enable us to assess the effect of recycled polycarbonate reinforcement on the overall behavior of the composite and to identify optimal formulation and manufacturing conditions. This approach contributes to the recovery of plastic waste in a circular economy approach, and opens up new prospects for applications in the aeronautics, automotive and advanced construction materials sectors.Keywords: recycling, polycarbonate, thermosetting matrices, mechanical characterization, thermal stability
Procedia PDF Downloads 11339 Study on the Contact Mechanics Characteristics of the Interface between Sand and Foundation Structure
Authors: Xueying Yang
Abstract:
The constitutive model of the contact surface is usually established by conducting interfacial shear tests in a fixed-size shear box. Given that these models are derived from experimental data, their reliability is generally unquestioned and, therefore, widely adopted, while the effect of size effects on the results of contact shear tests is often ignored. In this paper, ABAQUS software is used to numerically simulate the main mechanical characteristics of the contact surface between sand and concrete structures under unidirectional shear load. By changing the size of the shear vessel, including its length, height, and ratio of length to height, the influence of size effect on the mechanical characteristics of the contact surface of sand and concrete structures is analyzed from three aspects: shear dislocation zone, shear deformation, and strength characteristics. It is found that there is an obvious shear dislocation phenomenon on the contact surface; that is, the sand deformation is obviously divided into three regions: the upper part is the boundary influence zone, the middle part is the sand deformation zone, and the lower part is the shear dislocation zone, the thickness of which is 30mm. When the contact surface reaches the shear strength, the corresponding dislocation displacement is about 1mm. The length of the contact surface affects the shear stiffness and shear strength, and the height mainly affects the shear strength. The shear deformation characteristics of the contact surface have an obvious size effect, but the shear strength characteristics have no size effect. When the length and height of the sand are equal, the overall constraint of the sand is the weakest, the shear of the sand is the most thorough, and the shear displacement is about 5 times that of the length-height ratio of 2. This study has proved that the contact surface between sand and structure is not a common contact surface but a special shear dislocation zone with a certain thickness and shear deformation properties different from sand and structure, which has universal research value and applicability.Keywords: contact surface, mechanical properties, shear test, shear zone
Procedia PDF Downloads 20338 Precision Modeling of Directed Energy Deposition for Inconel 625: Advancing Additive Manufacturing and Industrial Applications
Authors: Peyman Ansari
Abstract:
Directed energy deposition (DED) is a transformative additive manufacturing technology that enables the fabrication of high-performance components with complex geometries and customized properties. This study focuses on the computational modeling and experimental validation of the DED process for Inconel 625, a nickel-based superalloy recognized for its superior mechanical strength, exceptional corrosion resistance, and high-temperature performance. Leveraging Flow3D software, a CFD-VOF-based model was developed to capture the intricate physics of the DED process, including phase change, thermal gradients, and molten pool dynamics. The model is grounded in solving conservation equations for mass, momentum, and energy, alongside phase transition dynamics, to predict deposition geometry, temperature distribution, and flow behavior with high accuracy. The simulation precisely characterizes the interaction between the laser and material, providing insights into optimizing key parameters such as laser power, scanning velocity, and powder feed rate. Experimental validation was conducted by fabricating single tracks of Inconel 625 under controlled conditions. The results showed remarkable consistency between simulated and experimental outputs, with deviations in wall geometry and thickness well within acceptable limits. These findings underscore the model's robustness and its potential to improve DED process reliability and efficiency. Inconel 625's unique properties position it as a critical material for industries such as aerospace, energy, and automotive, where components must endure extreme conditions and prolonged usage. This research contributes to advancing additive manufacturing by providing a reliable simulation framework that accelerates innovation, enhances process precision, and reduces costs associated with trial-and-error experimentation. The outcomes highlight the strategic role of computational modeling in bridging the gap between research and industrial applications, offering a pathway for developing next-generation manufacturing technologies.Keywords: additive manufacturing, directed energy deposition, flow 3D, Inconel 625, modeling, simulation
Procedia PDF Downloads 19337 In-Situ Defect Detection of Additive Manufactured Parts
Authors: Aswin T. M., Dhinnesh S., Guru Prasath K. S., Hasina M., Rajamani R.
Abstract:
Fused Deposition Modelling (FDM), a widely used Additive Manufacturing (AM) process, often faces challenges in the quality of the part, such as the formation of defects. The most common defects in FDM are stringing, dimensional inaccuracy, layer shifting, warping, and poor bridging. This work presents the summary of research work carried out in the field of AM, optimization of 3D printing process parameters, and techniques used for identifying defects. Also, an attempt is made to integrate machine vision with a deep learning model to continuously monitor the printing process. The system captures and analyzes layer-by-layer data of the printed part, detecting defects such as stringing, warping, and dimensional inaccuracy. FDM is extensively utilized across various sectors, including aerospace, automotive, healthcare, and consumer goods. In industries such as aerospace, where high precision and reliability are paramount, even minor defects can lead to component failures that compromise safety and performance. This highlights the critical need for real-time identification of defects produced during the printing process.Keywords: FDM, defect detection, machine vision, CNN
Procedia PDF Downloads 30336 Experimental Studies of Cyclic Load Resistance of Materials Samples Parts Manufactured by Powder Bed Fusion for Use in Aviation Gas Turbine Engines
Authors: L. Magerramova, M. Volkov, A. Stadnikov, A. Khakimov, D. Slugina, V. Isakov, I. Kabanov
Abstract:
The manufacture of parts of aviation gas turbine engines by additive methods is currently widespread due to the possibility of improving designs. However, the characteristics of the powder materials used in these technologies have not yet been sufficiently studied to our best knowledge. The issue of the resistance of such structures to vibration loads is particularly acute. This paper is devoted to the study of the characteristics of high cycle fatigue of objects (samples and parts) made using additive technologies from modern powder materials of titanium, nickel, and cobalt alloys under high cyclic loading, as well as typical blades of aviation gas turbine engines that experience vibration loads during operation.Keywords: additive manufacture, gas turbine engines, high cycle fatigue, experimental studies
Procedia PDF Downloads 31335 The Relationship between the Parameters of Laser 3D Printing of Titanium Alloy and Its Strength Properties
Authors: Lubov Magerramova, Vladimir Isakov, Michail Petrov
Abstract:
A methodology for calculating and modeling technological modes of laser 3D printing of Ti6Al4V powder alloy samples has been developed. ProXDPM320 3D printer was used. The technological model that takes into account the multifactorial influence of modes and conditions of additive cultivation on characteristics and strength properties of titanium samples has been created. Process control parameters and an order parameter, to which the others are subordinate, were established. Using the iterative method, the optimal technological parameters for the additive growth of cylindrical samples were calculated. The calculations were combined with data obtained during virtual 3D printing in the Altair Inspire software environment. The samples were subjected to short-term tensile strength tests at normal temperature on a servo-hydraulic machine “LFV-100”. As a result, deformation diagrams were constructed, and mechanical characteristics such as proportionality limit, conditional yield strength, tensile strength, elastic modulus, relative elongation, and stress at break were obtained. Comparison of these characteristics with those for the industrial alloy Ti6Al4V showed acceptable agreement. Some of the synthesized samples were subjected to laser shock treatment to increase fatigue strength. The results obtained were used to validate the mathematical model of 3D printing of titanium alloys.Keywords: additive technology, titanium alloy, numerical simulation, strength tests
Procedia PDF Downloads 27334 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place
Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky
Abstract:
For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.Keywords: laser welding, internal cavity, limited growth model, ni-superalloy
Procedia PDF Downloads 30333 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication
Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali
Abstract:
Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws
Procedia PDF Downloads 32332 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems
Authors: Shaoxiang Wang, Xiangjin Zhang
Abstract:
This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation
Procedia PDF Downloads 49331 In Situ Analysis of the Effect of Twinning on Deformation and Cracking of Magnesium Alloy
Authors: Chaoqun Zhao, Gang Fang
Abstract:
Twinning is an important deformation mechanism of magnesium alloys, but there is no consensus on the relationship between twinning and ductility. To comprehensively understand the effect of twinning on plastic deformation and cracking, the in situ tensile tests of a magnesium alloy sample along its extrusion direction were conducted, accompanied by the observations using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The misorientation angles around specific axes and trace analysis of grains were used to identify the active twinning systems. The results show that the area fraction of tension twins increases with the increasing strain, resulting in the c-axes of most grains rotating from the normal direction to the transverse direction, and the intensity of (0002) pole is weakened. Based on the analysis of kernel average misorientation (KAM) and SEM maps, it is found that the appearance of tension twins accommodates plastic deformation. However, the stress concentration caused by the intersection of tension twinning with the second phase can lead to crack initiation, and the crack propagates along the direction perpendicular to the tension twinning. For contraction twinning, it plays a role in plastic relaxation and improving strain compatibility during deformation, and is not a necessary potential mechanism of crack nucleation.Keywords: magnesium alloy, cracking, in-situ EBSD, twinning
Procedia PDF Downloads 43330 Transforming Automotive Performance: The Role of Additive Manufacturing
Authors: Joaquin Ticzon, Christian Demition, Jaime Honra
Abstract:
Additive manufacturing (AM) or 3D printing has been one of the emerging trends present in various industries, particularly in prototyping. This review focuses on the impact of additive manufacturing on a motor vehicle's performance aiming to investigate potential advancements to further revolutionize the way parts are manufactured. One of the most common problems faced in the automotive industry is carbon footprint emissions from motor vehicles, which was stated to be remedied by lightweight; additively manufactured parts helped reduce these emissions due to weight reduction provided by additively manufactured parts. Composed of various techniques for AM as well as materials utilized during the manufacturing process, which differ in terms of the quality and performance it provides during its application on the final product. Given this, the generative design will not be discussed in such a detailed manner because the focus will revolve around the effects on the performance of a vehicle due to additively manufactured parts.Keywords: additive manufacturing (AM), automotive, computer aided design (CAD), generative design
Procedia PDF Downloads 54329 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy
Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa
Abstract:
This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.Keywords: aluminum alloy, porosity, microstructures, hardness
Procedia PDF Downloads 77328 316L Passive Film Modification During Pitting Corrosion Process
Authors: Amina Sriba
Abstract:
In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone.Keywords: fusion zone, passive film, chemical elements, pit
Procedia PDF Downloads 71327 Modelling and Simulation of Milk Fouling
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
This work focuses on the study and modeling of the fouling phenomenon in a vertical pipe. In the first step, milk is one of the fluids obeying the phenomenon of fouling because of the denaturation of these proteins, especially lactoglobulin, which is the active element of milk, and to facilitate its use, we chose to study milk as a fouling fluid. In another step, we consider the test section of our installation as a tubular-type heat exchanger that works against the current and in a closed circuit. A simple mathematical model of Kern & Seaton, based on the kinetics of the fouling resistance, was used to evaluate the influence of the operating parameters (fluid flow velocity and exchange wall temperature) on the fouling resistance. The influence of the variation of the fouling resistance with the operating conditions on the efficiency of the heat exchanger and the importance of the dirty state exchange coefficient as an exchange quality control parameter were discussed and examined. On the other hand, an electronic scanning microscope analysis was performed on the milk deposit in order to obtain its actual image and composition, which allowed us to calculate the thickness of this deposit.Keywords: fouling, milk, tubular heat exchanger, fouling resistance
Procedia PDF Downloads 76326 Finite Deformation of a Dielectric Elastomeric Spherical Shell Based on a New Nonlinear Electroelastic Constitutive Theory
Authors: Odunayo Olawuyi Fadodun
Abstract:
Dielectric elastomers (DEs) are a type of intelligent materials with salient features like electromechanical coupling, lightweight, fast actuation speed, low cost and high energy density that make them good candidates for numerous engineering applications. This paper adopts a new nonlinear electroelastic constitutive theory to examine radial deformation of a pressurized thick-walled spherical shell of soft dielectric material with compliant electrodes on its inner and outer surfaces. A general formular for the internal pressure, which depends on the deformation and a potential difference between boundary electrodes or uniform surface charge distributions, is obtained in terms of special function. To illustrate the effects of an applied electric field on the mechanical behaviour of the shell, three different energy functions with distinct mechanical properties are employed for numerical purposes. The observed behaviour of the shells is preserved in the presence of an applied electric field, and the influence of the field due to a potential difference declines more slowly with the increasing deformation to that produced by a surface charge. Counterpart results are then presented for the thin-walled shell approximation as a limiting case of a thick-walled shell without restriction on the energy density. In the absence of internal pressure, it is obtained that inflation is caused by the application of an electric field. The resulting numerical solutions of the theory presented in this work are in agreement with those predicted by the generally adopted Dorfmann and Ogden model.Keywords: constitutive theory, elastic dielectric, electroelasticity, finite deformation, nonlinear response, spherical shell
Procedia PDF Downloads 111325 Factors Affecting Sustainability of a 3D Printed Object
Authors: Kadrefi Athanasia, Fronimaki Evgenia, Mavri Maria
Abstract:
3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object.Keywords: additive manufacturing, 3D printing, sustainable manufacturing, sustainable production
Procedia PDF Downloads 80324 Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process
Authors: El Oualid Mokhnache, Noureddine Ramdani
Abstract:
The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well.Keywords: barrel, ballistic, pressure, microstructure evolution, hardness
Procedia PDF Downloads 88323 Test Procedures for Assessing the Peel Strength and Cleavage Resistance of Adhesively Bonded Joints with Elastic Adhesives under Detrimental Service Conditions
Authors: Johannes Barlang
Abstract:
Adhesive bonding plays a pivotal role in various industrial applications, ranging from automotive manufacturing to aerospace engineering. The peel strength of adhesives, a critical parameter reflecting the ability of an adhesive to withstand external forces, is crucial for ensuring the integrity and durability of bonded joints. This study provides a synopsis of the methodologies, influencing factors, and significance of peel testing in the evaluation of adhesive performance. Peel testing involves the measurement of the force required to separate two bonded substrates under controlled conditions. This study systematically reviews the different testing techniques commonly applied in peel testing, including the widely used 180-degree peel test and the T-peel test. Emphasis is placed on the importance of selecting an appropriate testing method based on the specific characteristics of the adhesive and the application requirements. The influencing factors on peel strength are multifaceted, encompassing adhesive properties, substrate characteristics, environmental conditions, and test parameters. Through an in-depth analysis, this study explores how factors such as adhesive formulation, surface preparation, temperature, and peel rate can significantly impact the peel strength of adhesively bonded joints. Understanding these factors is essential for optimizing adhesive selection and application processes in real-world scenarios. Furthermore, the study highlights the role of peel testing in quality control and assurance, aiding manufacturers in maintaining consistent adhesive performance and ensuring the reliability of bonded structures. The correlation between peel strength and long-term durability is discussed, shedding light on the predictive capabilities of peel testing in assessing the service life of adhesive bonds. In conclusion, this study underscores the significance of peel testing as a fundamental tool for characterizing adhesive performance. By delving into testing methodologies, influencing factors, and practical implications, this study contributes to the broader understanding of adhesive behavior and fosters advancements in adhesive technology across diverse industrial sectors.Keywords: adhesively bonded joints, cleavage resistance, elastic adhesives, peel strength
Procedia PDF Downloads 108322 Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles
Authors: Rawan Aljabbari, Thamer Alomayri, Faisal G. Al-Maqate, Abeer Al Suwat
Abstract:
For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials.Keywords: fly ash, structural analysis, optical properties, morphology
Procedia PDF Downloads 100321 Wear Characteristics of Al Based Composites Fabricated with Nano Silicon Carbide Particles
Authors: Mohammad Reza Koushki Ardestani, Saeed Daneshmand, Mohammad Heydari Vini
Abstract:
In the present study, AA7075/SiO2 composites have been fabricated via liquid metallurgy process. Using the degassing process, the wet ability of the molten aluminum alloys increased which improved the bonding between aluminum matrix and reinforcement (SiO2) particles. AA7075 alloy and SiO2 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 2.5 and 5 wt. % of SiO2 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A uniform distribution of SiO2 particles was observed through the matrix alloy in the microstructural study. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc, a wear testing machine containing. The results showed that the wear rate of the AA/SiO2 composites was lesser than that of the monolithic AA7075 samples. Finally, The SEM worn surfaces of samples were investigated.Keywords: Al7075, SiO₂, wear, composites, stir casting
Procedia PDF Downloads 115320 Coupled Effect of Pulsed Current and Stress State on Fracture Behavior of Ultrathin Superalloy Sheet
Authors: Shuangxin Wu
Abstract:
Superalloy ultra-thin-walled components occupy a considerable proportion of aero engines and play an increasingly important role in structural weight reduction and performance improvement. To solve problems such as high deformation resistance and poor formability at room temperature, the introduction of pulse current in the processing process can improve the plasticity of metal materials, but the influence mechanism of pulse current on the forming limit of superalloy ultra-thin sheet is not clear, which is of great significance for determining the material processing window and improving the micro-forming process. The effect of pulse current on the microstructure evolution of superalloy thin plates was observed by optical microscopy (OM) and X-ray diffraction topography (XRT) by applying pulse current to GH3039 with a thickness of 0.2mm under plane strain and uniaxial tensile states. Compared with the specimen without pulse current applied at the same temperature, the internal void volume fraction is significantly reduced, reflecting the non-thermal effect of pulse current on the growth of micro-pores. ED (electrically deforming) specimens have larger and deeper dimples, but the elongation is not significantly improved because the pulse current promotes the void coalescence process, resulting in material fracture. The electro-plastic phenomenon is more obvious in the plane strain state, which is closely related to the effect of stress triaxial degree on the void evolution under pulsed current.Keywords: pulse current, superalloy, ductile fracture, void damage
Procedia PDF Downloads 90319 Research on Sensing Performance of Polyimide-Based Composite Materials
Authors: Rui Zhao, Dongxu Zhang, Min Wan
Abstract:
Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.Keywords: polyimide, composite, sensing, resistance change rate
Procedia PDF Downloads 97318 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift
Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard
Abstract:
Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.Keywords: floor lift, human robot interaction, admittance controller, variable admittance
Procedia PDF Downloads 130317 Remote Radiation Mapping Based on UAV Formation
Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov
Abstract:
High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation
Procedia PDF Downloads 118316 Corrosion Risk Assessment/Risk Based Inspection (RBI)
Authors: Lutfi Abosrra, Alseddeq Alabaoub, Nuri Elhaloudi
Abstract:
Corrosion processes in the Oil & Gas industry can lead to failures that are usually costly to repair, costly in terms of loss of contaminated product, in terms of environmental damage and possibly costly in terms of human safety. This article describes the results of the corrosion review and criticality assessment done at Mellitah Gas (SRU unit) for pressure equipment and piping system. The information gathered through the review was intended for developing a qualitative RBI study. The corrosion criticality assessment has been carried out by applying company procedures and industrial recommended practices such as API 571, API 580/581, ASME PCC 3, which provides a guideline for establishing corrosion integrity assessment. The corrosion review is intimately related to the probability of failure (POF). During the corrosion study, the process units are reviewed by following the applicable process flow diagrams (PFDs) in the presence of Mellitah’s personnel from process engineering, inspection, and corrosion/materials and reliability engineers. The expected corrosion damage mechanism (internal and external) was identified, and the corrosion rate was estimated for every piece of equipment and corrosion loop in the process units. A combination of both Consequence and Likelihood of failure was used for determining the corrosion risk. A qualitative consequence of failure (COF) for each individual item was assigned based on the characteristics of the fluid as per its flammability, toxicity, and pollution into three levels (High, Medium, and Low). A qualitative probability of failure (POF)was applied to evaluate the internal and external degradation mechanism, a high-level point-based (0 to 10) for the purpose of risk prioritizing in the range of Low, Medium, and High.Keywords: corrosion, criticality assessment, RBI, POF, COF
Procedia PDF Downloads 103315 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications
Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer
Abstract:
Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors
Procedia PDF Downloads 99