Search results for: thermal fluid characteristics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4249

Search results for: thermal fluid characteristics.

4009 Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam

Authors: P. Suriyachai, N. Thavarungkul, P. Sae-oui

Abstract:

In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.

Keywords: sodium bicarbonate, thermal conductivity, hot airmethod, infrared method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3749
4008 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
4007 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method

Authors: Adrian T. Plesca

Abstract:

This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
4006 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver

Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang

Abstract:

In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.

Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
4005 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
4004 Assessment of Thermal Comfort at Manual Car Body Assembly Workstation

Authors: A. R. Ismail, N. Jusoh, M. Z. Nuawi, B. M. Deros, N. K. Makhtar, M. N. A. Rahman

Abstract:

The objective of this study is to determine the thermal comfort among worker at Malaysian automotive industry. One critical manual assembly workstation had been chosen as a subject for the study. The human subjects for the study constitute operators at Body Assembly Station of the factory. The environment examined was the Relative Humidity (%), Airflow (m/s), Air Temperature (°C) and Radiant Temperature (°C) of the surrounding workstation area. The environmental factors were measured using Babuc apparatus, which is capable to measure simultaneously those mentioned environmental factors. The time series data of fluctuating level of factors were plotted to identify the significant changes of factors. Then thermal comfort of the workers were assessed by using ISO Standard 7730 Thermal sensation scale by using Predicted Mean Vote (PMV). Further Predicted percentage dissatisfied (PPD) is used to estimate the thermal comfort satisfaction of the occupant. Finally the PPD versus PMV were plotted to present the thermal comfort scenario of workers involved in related workstation. The result of PMV at the related industry is between 1.8 and 2.3, where PPD at that building is between 60% to 84%. The survey result indicated that the temperature more influenced comfort to the occupants

Keywords: Thermal, Comfort, Temperature, PPD, PMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
4003 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
4002 Distribution and Characterization of Thermal Springs in Northern Oman

Authors: Fahad Al Shidi, Reginald Victor

Abstract:

This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.

Keywords: Alkaline springs, geothermal, Hajar Super Group, Northern Oman, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
4001 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

Authors: L. Dahmani, M.Kouane

Abstract:

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3685
4000 Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

Authors: Kyoung Hoon Kim

Abstract:

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.

Keywords: Water injection, wet compression, gas turbine, turbine blade cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
3999 Numerical Investigation of Indoor Air Quality and Thermal Comfort in a Ventilated Room

Authors: Ramy H. Mohammed

Abstract:

Understanding the behavior of airflow in a room is essential for building designers to provide the most efficient design of ventilation system, and having acceptable indoor air quality. This trend is the motive to solve the relationship between airflow parameters and thermal comfort. This paper investigates airflow characteristics, indoor air quality (IAQ), and the thermal comfort (TC) in a ventilated room with a displacement ventilation system using three dimensional CFD code [AirPak 2.0.6]. After validation of the code, a numerical study is executed for a typical room with dimensions of 5m by 3m by 3m height according to a variety of supply air velocities, supply air temperature and supply air relative humidity. The finite volume method and the indoor zero equation turbulence models are employed for solving the governing equations numerically. The temperature field and the mean age of air (MAA) in the modeled room for a displacement ventilation system are determined according to a variety of the above parameters. The variable air volume (VAV) systems with different supply air velocity are applicable to control room air temperature for a displacement ventilation system.

Keywords: Displacement ventilation, AirPak, Indoor zero equation, MAA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
3998 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall

Authors: Muzna Tariq, Ihtzaz Qamar

Abstract:

In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.

Keywords: Computational Fluid Dynamics, CFD, conduction, conjugate heat transfer, CHT, convection, fluid flow, thermocouples.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
3997 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: J. Hroudova, M. Sedlmajer, J. Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
3996 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study

Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar

Abstract:

In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.

Keywords: Effective cooling, numerical modeling, photovoltaic cell, triangular ribs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
3995 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: Radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486
3994 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: Asphalt, concrete, satellite thermal images, timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
3993 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: Aerogel, aramid fabric, flexibility, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
3992 Evaluation of Optimal Residence Time in a Hot Rolled Reheating Furnace

Authors: Dong-Eun Lee

Abstract:

To calculate the temperature distribution of the slab in a hot rolled reheating furnace a mathematical model has been developed by considering the thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as radiating medium with spatially varying temperature. Radiative heat flux within the furnace including the effect of furnace walls, combustion gases, skid beams and buttons is calculated using the FVM and is applied as the boundary condition of the transient conduction equation of the slab. After determining the slab emissivity by comparison between simulation and experimental work, variation of heating characteristics in the slab is investigated in the case of changing furnace temperature with various time and the slab residence time is optimized with this evaluation.

Keywords: Reheating Furnace, Thermal Radiation, ResidenceTime, FVM for Radiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
3991 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
3990 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

Authors: M. Faraji, F. Berroug

Abstract:

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3989 Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions

Authors: Bin Su

Abstract:

The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiency

Keywords: Courtyard, house design, indoor thermal comfort, 'wind-rain' house

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
3988 Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle

Authors: Pei-Syuan Ruan, Ya-Chi Yu, Shao-Wen Chen, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.

Keywords: Conductivity probes, rod bundles, two-phase flow, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
3987 Numerical Simulation of the Flow Field around a Vertical Flat Plate of Infinite Extent

Authors: Marco Raciti Castelli, Paolo Cioppa, Ernesto Benini

Abstract:

This paper presents a CFD analysis of the flow field around a thin flat plate of infinite span inclined at 90° to a fluid stream of infinite extent. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a bluff body invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested. Flow field characteristics in the neighborhood of the flat plate have been investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a two-dimensional vertical flat plate.

Keywords: CFD, vertical flat plate, aerodynamic force

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
3986 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: Experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
3985 Thermal Regions for Unmanned Aircraft Systems Route Planning

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier. One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drag. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wings which can use thermals like birds and gliders. Thermal regions, which is area of 2000-3000 meter (1 NM), exist all around the world. It is natural and infinite source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: Airways, Thermals, UAS, UAS Roadmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
3984 Biodegradable Cellulose-Based Materials for the Use in Food Packaging

Authors: Azza A. Al-Ghamdi, Abir S. Abdel-Naby

Abstract:

Cellulose acetate (CA) is a natural biodegradable polymer. It forms transparent films by the casting technique. CA suffers from high degree of water permeability as well as the low thermal stability at high temperatures. To adjust the CA polymeric films to the manufacture of food packaging, its thermal and mechanical properties should be improved. The modification of CA by grafting it with N-Amino phenyl maleimide (N-APhM) led to the construction of hydrophobic branches throughout the polymeric matrix which reduced its wettability as compared to the parent CA. The branches built onto the polymeric chains had been characterized by UV/Vis, 13C-NMR and ESEM. The improvement of the thermal properties was investigated and compared to the parent CA using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), contact angle and mechanical testing measurements. The results revealed that the water-uptake was reduced by increasing the graft percentage. The thermal and mechanical properties were also improved.

Keywords: Cellulose acetate, food packaging, graft copolymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
3983 The Impact of an Air-Supply Guide Vane on the Indoor Air Distribution

Authors: C.-C. Tsao, S.-W. Nien, W.-H. Chen , Y.-C. Shih

Abstract:

Indoor air distribution has great impact on people-s thermal sensation. Therefore, how to remove the indoor excess heat becomes an important issue to create a thermally comfortable indoor environment. To expel the extra indoor heat effectively, this paper used a dynamic CFD approach to study the effect of an air-supply guide vane swinging periodically on the indoor air distribution within a model room. The numerical results revealed that the indoor heat transfer performance caused by the swing guide vane had close relation with the number of vortices developing under the inlet cold jet. At larger swing amplitude, two smaller vortices continued to shed outward under the cold jet and remove the indoor heat load more effectively. As a result, it can be found that the average Nusselt number on the floor increased with the increase of the swing amplitude of the guide vane.

Keywords: Computational Fluid Dynamics (CFD), dynamic mesh, heat transfer, indoor air distribution, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3982 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass

Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo

Abstract:

Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.

Keywords: CFD analysis, ECC Bypass, hydraulic form loss coefficient, system thermal-hydraulic code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
3981 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: Dislocation, internal friction, microhardness, relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
3980 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.

Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946