Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33150
Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: Dislocation, internal friction, microhardness, relaxation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125435

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015

References:


[1] J. L. Lindstrom, B. G. Svensson, Mater. Res. Soc. Symp. Proc. 59, 1986 p.45, 1986.
[2] Y. H. Lee, J.W. Corbett, Phys. Rev. B 13, p. 2653, 1976
[3] G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol, 2, p.524, 1987
[4] V.K. Bajenov, V.I. Fistul, Fiz. Tekh. Poluprovodnikov 18 (1984)1345
[5] L.I. Khirunenko, V.I. Shakhovstov, V.K. Shinkarenko, L.I. Shpinar, I.I. Yaskovetc, Fiz. Tekh. Poluprovodnikkov 21, p. 562, 1987.
[6] L.I. Khirunenko, V.I. Shakhovstov, V.V. Shumov, Solid State Phenomena 57-58,p. 183, 1997.
[7] D.I. Brinkevich, V.P. Markevich, L.I. Murin, V.V. Petrov, Fiz.Tekh. Poluprovodnikov 26 ,p. 682, 1992
[8] A.R. Bean, R.C. Newman. J.Phys.Chem. Solids 33,p. 255, 1972.
[9] W.P. Dumke, G.R. Woolhouse, IBM Tech. Disclosure Bull.21, p. 4687 1979
[10] Tetsuo Fukuda, Akira Ohsawa. Mechanical strength of silicon crystals with oxygen and/or germanium impurities. Appl.Phys.Lett. 60 #10, pp.1184-1186, 1992.
[11] I. Yonenaga. Physica B 273-274, p.612,1999
[12] D. Y.Watts, A.F.W. Willoughby. Mater.Lett. 2, p.355 ,1984
[13] I. Kurashvili, G. Bokuchava, T. Mkheidze, I. Baratashvili, G. Darsavelidze. Inelastic Properties of monocrystalline Si-Ge alloys. Bulletin of the Georgian National Academy of Sciences. Vol. 175, #4, pp.62-65, 2007.
[14] I. Kurashvili, E. Sanaia, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze, V. Kuchukhidze. Physical-mechanical properties of germanium doped monocrystalline silicon. Journal of Materials Science and Engineering A3 (10) pp.698-703, 2013
[15] V.S. Postnikov. Internal friction in metallic materials. M: Metallurgia, 370p, 1974
[16] H.R. Kolar, J.C.H. Spence, Alexander H. Phys. Rev.Lett. 77, pp.4031-4036, 1996.
[17] K. Sangwal. Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids – some basic concepts and trends. Cryst. Res. Technol. 44, # 10, pp.1019 – 1037, 2009 / DOI 10.1002/crat.200900385