Search results for: rock-salt and wurtzite.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Search results for: rock-salt and wurtzite.

9 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the cesium chloride (CsCl), zinc-blende (ZnS), nickel arsenide (NiAs) NaCl (rock-salt) and WZ (wurtzite) phases. We calculated. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT).

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt and wurtzite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
8 Nonlinear Conduction in Pure and Doped ZnO Varistors

Authors: A. Sedky, E. El-Suheel

Abstract:

We report here structural, mechanical and I-V characteristics of Zn1-xMxO ceramic samples with various x and M. It is found that the considered dopants does not influence the wellknown peaks related to wurtzite structure of ZnO ceramics, while the shape and size of grains are clearly affected. Average crystalline diameters, deduced from XRD are between 42 nm and 54 nm, which are 70 times lower than those obtained from SEM micrographs. Interestingly, the potential barrier could be formed by adding Cu up to 0.20, and it is completely deformed by 0.025 Ni additions. The breakdown field could be enhanced up to 4138 V/cm by 0.025 Cu additions, followed by a decrease with further increase of Cu . On the other hand a gradual decrease in VHN is reported for both dopants and their values are higher in Ni samples as compared to Cu samples. The electrical conductivity is generally improved by Ni, while addition of Cu improved it only in the over doped region (≥ 0.10). These results are discussed in terms of the difference of valency and ferromagnetic ordering for both dopants as compared to undoped sample.

Keywords: Semiconductors, Chemical Synthesis, Impurities and Electronic Transport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
7 Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles

Authors: T.K. Tan, P.S. Khiew, W.S. Chiu, S.Radiman, R.Abd-Shukor, N.M. Huang, H.N. Lim

Abstract:

In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.

Keywords: Nanostructures, phenol red, zinc oxide, heterogeneous photocatalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
6 Surface Phonon Polariton in InAlGaN Quaternary Alloys

Authors: S. S. Ng, Z. Hassan, H. Abu Hassan

Abstract:

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

Keywords: III-nitride semiconductor, attenuated total reflection, quaternary alloy, surface phonon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
5 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
4 Piezoelectric Polarization Effect on Debye Frequency and Temperature in Nitride Wurtzites

Authors: Bijay Kumar Sahoo, Ashok Kumar Srivastav

Abstract:

We have investigated the effect of piezoelectric (PZ) polarization property in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into consideration.

Keywords: Wirtzite nitrides, piezoelectric polarization, Phonon group velocity, Debye frequency and Debye temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
3 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More

Abstract:

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
2 Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys

Authors: N. H. Abd Raof, H. Abu Hassan, S.K. Mohd Bakhori, S. S. Ng, Z. Hassan

Abstract:

Quaternary InxAlyGa1-x-yN semiconductors have attracted much research interest because the use of this quaternary offer the great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. The structural and optical properties of InxAlyGa1-x-yN alloys grown by molecular beam epitaxy (MBE) is presented. The structural quality of InxAlyGa1-x-yN layers was characterized using high-resolution X-ray diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN films had wurtzite structure and without phase separation. As the In composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN peak gradually decreases, indicating the increase in the lattice constant c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with increasing In composition from 0 to 0.04, that could indicate the decrease of quality of the samples due to point defects leading to non-uniformity of the epilayers. UV-VIS spectroscopy have been used to study the energy band gap of InxAlyGa1-x-yN. As the indium (In) compositions increases, the energy band gap decreases. However, for InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer. The bowing parameter which appears also to be very sensitive on In content is investigated and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From photoluminescence (PL) measurement, green luminescence (GL) appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm and it become more pronounced as the In composition (x) increased, which is believed cause by gallium vacancies and related to isolated native defects.

Keywords: HRXRD, nitrides, PL, quaternary, UV-VIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488