Nonlinear Conduction in Pure and Doped ZnO Varistors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Nonlinear Conduction in Pure and Doped ZnO Varistors

Authors: A. Sedky, E. El-Suheel

Abstract:

We report here structural, mechanical and I-V characteristics of Zn1-xMxO ceramic samples with various x and M. It is found that the considered dopants does not influence the wellknown peaks related to wurtzite structure of ZnO ceramics, while the shape and size of grains are clearly affected. Average crystalline diameters, deduced from XRD are between 42 nm and 54 nm, which are 70 times lower than those obtained from SEM micrographs. Interestingly, the potential barrier could be formed by adding Cu up to 0.20, and it is completely deformed by 0.025 Ni additions. The breakdown field could be enhanced up to 4138 V/cm by 0.025 Cu additions, followed by a decrease with further increase of Cu . On the other hand a gradual decrease in VHN is reported for both dopants and their values are higher in Ni samples as compared to Cu samples. The electrical conductivity is generally improved by Ni, while addition of Cu improved it only in the over doped region (≥ 0.10). These results are discussed in terms of the difference of valency and ferromagnetic ordering for both dopants as compared to undoped sample.

Keywords: Semiconductors, Chemical Synthesis, Impurities and Electronic Transport

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055849

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127

References:


[1] T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).
[2] A.B. Glot, J. Mater. Sci.: Mater electron 17, 755 (2006).
[3] L.M. Levinson and H. R. Phillip, Am. Cream. Soc. Bull. 65 (4) 639 (1986).
[4] G.D. Mahan, L.M. Levinson, H.R. Philipp, J. Appl. Phys. 50, 2799 (1979).
[5] B.Z.Azmi, Zahid Rizwan, M. Hashim, A.H. Shaari, W.M.M. Yunus and E. Saion, Am. J. Appl. Sci. (Special Issue) , 22 (2005).
[6] V. Srikant and D.R. Clarke, J. Appl. Phys. 83, 10, 5447 (1998).
[7] Q. Shen, T. Toyoda, Jpn. J. Appl. Phys. 39, 3146 (2000).
[8] S. Abdalla; K. Easawi; T. A. El-Brolossy, G. M. Yossef, S. Negm and H. Talaat, Rev. Sci. Instrum., 74 No (1), 848 (2003).
[9] T.K. Gupta, J. Mater. Res. 7 (12), 3280 (1992).
[10] Mourad Houabes, Slavko Bernik and Chabance Talhi and Ai Bui, Ceramic international 29, (6), 783 (2005).
[11] A.M.R Senos, M.R. Santos, A.P. Moreira and J.M. Vieira, In surface and Interfaces of Ceramic Materials, ed. L. C. Dufour, C. Monty and G. Petot-Ervas, NATO ASI Series, Kluwer Academic, London, 553 (1988).
[12] A.M.R Senos and J.M. Vieira, In Proceedings of the international Conference Third Euro-Ceramics, Vol 1, ed. P. Duran and J. F. Fernandez, Faenza Edit rice Iberica S. L. Faenza, 821 (1993).
[13] J.D. Levine, CRC Crit. Revs. Solid States Sci. 5, 597 (1975).
[14] J. Bernasconi, S. Strassler, B. Knecht, H.P. Klein and A. Menth, Solid State Communs. 21, 867 (1977).
[15] N.W.Emanetoglu, C.Gorla, Y.Liu, S.Liang and Y.Lu, Mater.Sci. Semicond. Process. 2, 247 (1999).
[16] R.Paneva and D.Gotchev, Sens. Actuators A: Phys. 72, 79 (1999).
[17] Lian Gao, Qiang Li , Weiling Luan, Hirokazu Kawaoka, Tohru Sekino and Koichi Niihara , J.Am. Ceram. Soc. 85, 4, 1016 (2002).
[18] D.R. Clarke, J.Am. Ceram.Soc. 82, 3, 485 (1999).
[19] M. Matsouka, Jpn.J. Appl. Phys. 10, 6, 736 (1971).
[20] K. Mukae, K. Tsuda and I. Nagasawa, Jpn.J. Appl. Phys. 16, 8, 1361 (1977).
[21] G.E. Pike and C.H. Seager, J.Appl. Phys., 50, 5, 3414 (1979).
[22] Fumiyasu Obe, Yukio Sato, Takahisa Yamamoto, Yuichi Ikuhara and Taketo Sakuma, J.Am. Ceram. Soc. 86, 9 , 1 ( 2003).
[23] Zhen Zhou, K. Kato, T. Komaki, M. Yoshino, H.Yukawa, M.Morinaga and K.Morita , J. Eur. Ceram. Soc. 24 , 139 (2004).
[24] A.Sedky, M.Abu-Abdeen and Abdul-Aziz A. Almulhem, Physica B 388, 266 (2007).
[25] A. Sedky , Ayman Al- Sawalha and A.M. Yassin, Physica , Egyption J . Solids 31, 2, 205 (2008).
[26] A.Sedky, T.A. El-Brolossy and S.B. Mohamed , J. Phys. Chem. Solids 73, 505 (2012).
[27] A.Sedky and E. El-Suheel , Physics Research International, 2010, 1 (2010).
[28] A. Sedky , Ayman Al- Sawalha and A.M. Yassin, Physica B 404 , 3519 (2009).
[29] J. Han, P.Q. Mantas and A.M.R. Senos, J. Eur. Ceram. Soc. 21 , 1883 (2001).
[30] J. Han, A.M.R. Senos and P.Q. Mantas, J. Eur. Ceram. Soc. 22 , 1653 (2002).
[31] J. Han, A.M.R. Senos and P.Q. Mantas, J. Eur. Ceram. Soc. 19 , 1003 (1999).
[32] J. Han, A.M.R. Senos and P.Q. Mantas, Mater. Chem. Phys. 75 , 117 (2002).
[33] J. Han, P.Q. Mantas and A.M.R. Senos, J. Eur. Ceram. Soc. 22 , 49 (2002).
[34] D.C.Look, J.W. Hemsky and J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
[35] W.G. Carlson and T.K.Gupta, J.Appl. Phys. 53, 5746 (1982).
[36] Guangqing Pei, Changtai Xia, Shixun Cao, Jungang Zhang, Feng Wu and Jun Xu, JMMM 302, 2, 340 (2006).
[37] V.V. Deshpande, M.M. Patil and V. Ravi, Ceramic international 32, 85 (2006).
[38] T. Takemura, M. Kobayashi, Y. Takada and K. Sato, J.Am. Ceram. Soc. 70, (4), 237(1987).
[39] A.Sedky, Under Press, Superlattice and Microstructures (2011).
[40] P. Fons, K. Nakahara, A. Yamada, K. Iwata, K. Matsubara, H. Takasu and S. Niki, Phys. Stat. Sol. 229,2 , 849 (2002).
[41] T.R. Kutty and N. Raghu, Appl. Phys. Lett. 54, 18, 1796 (1989).
[42] S.T. Jun and G.M. Choi, J. Am. Ceram. Soc. 81, 3, 695 (1998).
[43] T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).
[44] K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).