Search results for: poly ethylene glycol (PEG)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 208

Search results for: poly ethylene glycol (PEG)

148 Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber

Authors: Mustafa Yılmaz, Ahmet Akar, Nesrin Köken, Nilgün Kızılcan

Abstract:

Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers.

Keywords: Flame retardant, nanofiber, polyacrylonitrile, phosphorous compound, membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
147 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
146 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
145 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)

Authors: A.Guntida, K. Suriye, S. Kunjara Na Ayudhya, J. Panpranot, P. Praserthdam

Abstract:

Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450oC and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.

Keywords: Extra support, nanomaterial, propylene self-metathesis, tungsten oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
144 Formulation and in vitro Evaluation of Ondansetron Hydrochloride Matrix Transdermal Systems Using Ethyl Cellulose/Polyvinyl Pyrrolidone Polymer Blends

Authors: Rajan Rajabalaya, Li-Qun Tor, Sheba David

Abstract:

Transdermal delivery of ondansetron hydrochloride (OdHCl) can prevent the problems encountered with oral ondansetron. In previously conducted studies, effect of amount of polyvinyl pyrrolidone, permeation enhancer and casting solvent on the physicochemical properties on OdHCl were investigated. It is feasible to develop ondansetron transdermal patch by using ethyl cellulose and polyvinyl pyrrolidone with dibutyl pthalate as plasticizer, however, the desired flux is not achieved. The primary aim of this study is to use dimethyl succinate (DMS) and propylene glycol that are not incorporated in previous studies to determine their effect on the physicochemical properties of an OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone. This study also investigates the effect of permeation enhancer (eugenol and phosphatidylcholine) on the release of OdHCl. The results showed that propylene glycol is a more suitable plasticizer compared to DMS in the fabrication of OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone as polymers. Propylene glycol containing patch has optimum drug content, thickness, moisture content and water absorption, tensile strength, and a better release profile than DMS. Eugenol and phosphatidylcholine can increase release of OdHCl from the patches. From the physicochemical result and permeation profile, a combination of 350mg of ethyl cellulose, 150mg polyvinyl pyrrolidone, 3% of total polymer weight of eugenol, and 40% of total polymer weight of propylene glycol is the most suitable formulation to develop an OdHCl patch. OdHCl release did not increase with increasing the percentage of plasticiser. DMS 4, PG 4, DMS 9, PG 9, DMS 14, and PG 14 gave better release profiles where using 300mg: 0mg, 300mg: 100mg, and 350mg: 150mg of EC: PVP. Thus, 40% of PG or DMS appeared to be the optimum amount of plasticiser when the above combination where EC: PVP was used. It was concluded from the study that a patch formulation containing 350mg EC, 150mg PVP, 40% PG and 3% eugenol is the best transdermal matrix patch compositions for the uniform and continuous release/permeation of OdHCl over an extended period. This patch design can be used for further pharmacokinetic and pharmacodynamic studies in suitable animal models.

Keywords: Ondansetron hydrochloride, dimethyl succinate, eugenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
143 Release Behavior of Biodegradable and Nonbiodegradable Polymeric Microparticles Loaded with Nimesulide

Authors: Shujaat A. Khan, Ghulam Murtaza

Abstract:

This presentation narrates the comparative analysis of the dissolution data nimesulide microparticles prepared with ethylcellulose, hydroxypropyl methylcellulose, chitosan and Poly(D,L-lactide-co-glycolide) as polymers. The analysis of release profiles showed that the variations noted in the release behavior of nimesulide from various microparticulate formulations are due to the nature of used polymer. In addition, maximum retardation in the nimesulide release was observed with HPMC (floating particles). Thus HPMC miacroparticles may be preferably employed for sustained release dosage form development.

Keywords: Nimesulide, microparticles, ethylcellulose, hydroxypropyl methylcellulose, chitosan and Poly(D, L-lactide-coglycolide).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
142 Feedstock Effects on Selecting the Appropriate Coil Configuration for Cracking Furnaces

Authors: Ramin Karimzadeh, Nazi Rahimi, Mohammad Ghashghaee

Abstract:

In the present research, steam cracking of two types of feedstocks i.e., naphtha and ethane is simulated for Pyrocrack1-1 and 2/2 coil configurations considering two key parameters of coil outlet temperature (COT) and coil capacity using a radical based kinetic model. The computer model is confirmed using the industrial data obtained from Amirkabir Petrochemical Complex. The results are in good agreement with performance data for naphtha cracking in a wide range of severity (0.4-0.7), and for ethane cracking on various conversions (50-70). It was found that Pyrocrack2-2 coil type is an appropriate choice for steam cracking of ethane at reasonable ethylene yield while resulting in much lower tube wall temperature while Pyrocrack1-1 coil type is a proper selection for liquid feedstocks i.e. naphtha. It can be used for cracking of liquid feedstocks at optimal ethylene yield whereas not exceeding the allowable maximum tube temperature.

Keywords: Coil configuration, Ethane, Naphtha, Steamcracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3713
141 Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors

Authors: F. Esmaeilzadeh, Y. Fayazi, J. Fathikaljahi

Abstract:

Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.

Keywords: Hydrate formation, thermodynamic inhibitor, waterbaseddrilling mud, salt, static loop apparatus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
140 Physical and Chemical Investigation of Polycaprolactone, Nanohydroxyapatite and Poly (Vinyl Alcohol) Nanocomposite Scaffolds

Authors: A.Doustgani, E.Vasheghani- Farahani, M. Soleimani, S. Hashemi-Najafabadi

Abstract:

Aligned and random nanofibrous scaffolds of PVA/PCL/nHA were fabricated by electrospinning method. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters of aligned and random scaffolds were 135.5 and 290 nm, respectively. The obtained scaffolds have a porous structure with porosity of 88 and 76% for random and aligned nanofibers, respectively. Furthermore, FTIR analysis demonstrated that there were strong intramolecular interactions between the molecules of PVA/PCL/nHA. On the other hand, mechanical characterizations show that aligning the nanofibers, could significantly improve the rigidity of the resultant biocomposite nanofibrous scaffolds.

Keywords: Electrospinnig, nanofibrous scaffold, poly (vinyl alcohol), polycaprolactone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
139 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: Windshield, Poly(vinyl butyral), Mortar, Diffusion, Carbonatation, Polymer waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3656
138 The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

Authors: Pooria Pasbakhsh, Rangika T. De Silva, Vahdat Vahedi, Hanafi Ismail

Abstract:

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA and CLA, respectively, with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites

Keywords: Aspect ratio, Halloysite nanotubes (HNTs), Mechanical properties, Rubber/clay nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
137 Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability

Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi

Abstract:

Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.

Keywords: Drying pretreatments, Solar drying, Tomato powder, Tunnel drying

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
136 Comparative in silico and in vitro Study of N-(1- Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as Adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemia, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, antiinflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilinoethyl) benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 μM whereas for doxorubicin is 7.2 μM.

Keywords: Anticancer, Auto Dock, Doxorubicin, Sulfonamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
135 Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates

Authors: R. D. Kulkarni, Mayur Chaudhari, S. Mishra

Abstract:

Curing of paints by exposure to UV radiations is emerging as one of the best film forming technique as an alternative to traditional solvent borne oxidative and thermal curing coatings. The composition and chemistry of UV curable coatings and role of multifunctional and monofunctional monomers, oligomers, and photoinitiators have been discussed. The limitations imposed by thermodynamic equilibrium and tendency for acrylic double bond polymerizations during synthesis of multifunctional acrylates have been presented. Aim of present investigation was thus to explore the reaction variables associated with synthesis of multifunctional acrylates. Zirconium oxychloride was evaluated as catalyst against regular acid functional catalyst. The catalyzed synthesis of glyceryl acrylate and neopentyl glycol acrylate was conducted by variation of following reaction parameters: two different reactant molar ratios- 1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5 and two different reaction temperatures- 45 and 75 0C. The reaction was monitored by determination of acid value and hydroxy value at regular intervals, besides TLC, HPLC, and FTIR analysis of intermediates and products. On the basis of determination of reaction progress over 1-60 hrs, the esterification reaction was observed to follow 2nd order kinetics with rate constant varying from 1*10-4 to 7*10-4. The thermal and catalytic components of second order rate constant and energy of activation were also determined. Uses of these kinetic and thermodynamic parameters in design of reactor for manufacture of multifunctional acrylate ester have been presented. The synthesized multifunctional acrylates were used to formulate and apply UV curable clear coat followed by determination of curing characteristics and mechanical properties of cured film. The overall curing rates less than 05 min. were easily attained indicating economical viability of radiation curable system due to faster production schedules

Keywords: glyceryl acrylate, neopentyl glycol acrylate, kinetic modeling, zirconium oxychloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
134 Microneedles-Mediated Transdermal Delivery

Authors: M. Petchsangsai, N. Wonglertnirant, T. Rojanarata, P. Opanasopit, T. Ngawhirunpat

Abstract:

The objective of the present study was to evaluate the potential of hollow microneedles for enhancing the transdermal delivery of Bovine Serum Albumin (MW~66,000 Da)-Fluorescein Isothiocyanate (BSA-FITC) conjugate, a hydrophilic large molecular compound. Moreover, the effect of different formulations was evaluated. The series of binary mixtures composed of propylene glycol (PG) and pH 7.4 phosphate buffer solution (PBS) was prepared and used as a medium for BSA-FITC. The results showed that there was no permeation of BSA-FITC solution across the neonatal porcine skin without using hollow microneedles, whereas the cumulative amount of BSA-FITC released at 8 h through the neonatal porcine skin was about 60-70% when using hollow microneedles. Furthermore, the results demonstrated that the higher volume of PG in binary mixtures injected, the lower cumulative amount of BSA-FITC released and release rate of BSA-FITC from skin. These release profiles of BSA-FITC in binary mixtures were expressed by Fick-s law of diffusion. These results suggest the utilization of hollow microneedle to enhance transdermal delivery of protein and provide useful information for designing an effective hollow microneedle system.

Keywords: Hydrophilic macromolecules, Microneedles, Propylene glycol, Transdermal drug delivery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
133 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
132 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength

Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain

Abstract:

Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.

Keywords: Processed films, polyvinyl alcohol, spectroscopy, surface morphology, templated polyanilines, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
131 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures

Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu

Abstract:

The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.

Keywords: Electron beam irradiation, EPDM rubber, crosslinking density, gel fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
130 Barrier Properties of Starch - Ethylene Vinyl Alcohol Nanocomposites

Authors: Farid Amidi-Fazli, Neda Amidi-Fazli

Abstract:

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1-15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

Keywords: Starch, EVOH, nanocrystalline cellulose, Hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951
129 Experimental Investigation of Vessel Volume and Equivalence Ratio in Vented Gas

Authors: Rafiziana M. Kasmani, Gordon E. Andrews, Herodotos N. Phylaktou, Norazana Ibrahim, Roshafima R. Ali

Abstract:

An experiment of vented gas explosions involving two different cylinder vessel volumes (0.2 and 0.0065 m3) was reported, with equivalence ratio (Φ) ranged from 0.3 to 1.6. Both vessels were closed at the rear end and fitted at the other side with a circular orifice plate that gives a constant vent coefficient (K =Av/V2/3) of 16.4. It was shown that end ignition gives higher overpressures than central ignition, even though most of the published work on venting uses central ignition. For propane and ethylene, it is found that rich mixtures gave the highest overpressures and these mixtures are not considered in current vent design guidance; which the guideline is based on mixtures giving the maximum flame temperature. A strong influence of the vessel volume at constant K was found for methane, propane, ethylene and hydrogen-air explosions. It can be concluded that self- acceleration of the flame, which is dependent on the distance of a flame from the ignition and the ‘suction’ at the vent opening are significant factors affecting the vent flow during explosion development in vented gas explosion. This additional volume influence on vented explosions is not taken into account in the current vent design guidance.

Keywords: Equivalence ratio, ignition position, self-acceleration flame, vented gas explosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
128 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun

Abstract:

In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.

Keywords: Fiber treatment, impact modifier, natural fibers, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
127 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.

Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
126 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
125 Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures

Authors: S. Jedari Salami

Abstract:

In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.

Keywords: Multi-layer sandwich structures, Internal sheet, Crushable foam, Top core, Bottom core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
124 Development of Mobile EEF Learning System (MEEFLS) for Mobile Learning Implementation in Kolej Poly-Tech MARA (KPTM)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile learning (m-learning) is a new method in teaching and learning process which combines technology of mobile device with learning materials. It can enhance student's engagement in learning activities and facilitate them to access the learning materials at anytime and anywhere. In Kolej Poly-Tech Mara (KPTM), this method is seen as an important effort in teaching practice and to improve student learning performance. The aim of this paper is to discuss the development of m-learning application called Mobile EEF Learning System (MEEFLS) to be implemented for Electric and Electronic Fundamentals course using Flash, XML (Extensible Markup Language) and J2ME (Java 2 micro edition). System Development Life Cycle (SDLC) was used as an application development approach. It has three modules in this application such as notes or course material, exercises and video. MEELFS development is seen as a tool or a pilot test for m-learning in KPTM.

Keywords: Flash, mobile device, mobile learning, teaching and learning, SDLC, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
123 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: Bitumen, crumb rubber, ethylene vinyl acetate, FT wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
122 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: J. Y. Lee, J. Kim, H. J. Chang, J. M. Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: Resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
121 Enhancement of Learning Style in Kolej Poly-Tech MARA (KPTM) via Mobile EEF Learning System (MEEFLS)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile communication provides access to the outside world without borders everywhere and at any time. The learning method that related to mobile communication technology is known as mobile learning (M-learning). It is a method that communicates learning materials with mobile device technology. The purpose of this method is to increase the interest in learning among students and assist them in obtaining learning materials at Kolej Poly-Tech MARA (KPTM) in order to improve the student’s performance in their study and to encourage educators to diversify the teaching practices. This paper discusses the student’s awareness for enhancement of learning style using mobile technologies and their readiness to apply the elements of mobile learning in learning to improve performance and interest in learning among students. An application called Mobile EEF Learning System (MEEFLS) has been developed as a tool to be used as a pilot test in KPTM.

Keywords: Awareness, MEEFLS, mobile learning, readiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
120 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
119 Biorecognizable Nanoparticles Based On Hyaluronic Acid/Poly(ε-Caprolactone) Block Copolymer

Authors: Jong Ho Hwang, Dae Hwan Kang, Young-IL Jeong

Abstract:

Since hyaluronic acid (HA) receptor such as CD44 is over-expressed at sites of cancer cells, HA can be used as a targeting vehicles for anti-cancer drugs. The aim of this study is to synthesize block copolymer composed of hyaluronic acid and poly(ε-caprolactone) (HAPCL) and to fabricate polymeric micelles for anticancer drug targeting against CD44 receptor of tumor cells. Chemical composition of HAPCL was confirmed using 1H NMR spectroscopy. Doxorubicin (DOX) was incorporated into polymeric micelles of HAPCL. The diameters of HAPHS polymeric micelles were changed around 80nm and have spherical shapes. Targeting potential was investigated using CD44-overexpressing. When DOX-incorporated polymeric micelles was added to KB cells, they revealed strong red fluorescence color while blocking of CD44 receptor by pretreatment of free HA resulted in reduced intensity, indicating that HAPCL polymeric micelles have targetability against CD44 receptor.

Keywords: Hyaluronic acid, CD44 receptor, biorecognizable nanoparticles, block copolymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5959