Search results for: plate thickness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 951

Search results for: plate thickness

861 Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

Authors: Motahar Reza, Anadi Sankar Gupta

Abstract:

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Keywords: Viscoelastic fluid, Flow past a porous plate, Heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
860 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: Ramesh S., Sasiraaju A. S., Sidhaarth K., Sudhan Rajkumar N., Manivel Muralidaran V.

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: Chromoly, Gas Metal Arc Weld (GMAW), Hardness, Multi pass weld, Shielding gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
859 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
858 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
857 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations

Authors: T. H. Young, S. J. Huang, Y. S. Chiu

Abstract:

This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.

Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
856 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: Corrugated beam, monotonic loading, finite element analysis, end plate connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
855 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Authors: I. Algul, G. Akgun, H. Kurtaran

Abstract:

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Keywords: Generalized differential quadrature method, doubly curved panels, laminated composite materials, small displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
854 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray

Authors: M. M. Seraj, M. S. Gadala

Abstract:

This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.

Keywords: Water spray, wetting, aluminum plate, flow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
853 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers

Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho

Abstract:

In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.

Keywords: Plate heat exchanger, optimization, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
852 Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate

Authors: M. Si Abdallah, B. Zeghmati

Abstract:

A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.

Keywords: Free convection, wavy surface, inclined surface, thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
851 A Methodological Test to Study the Concrete Workability with the Fractal Model

Authors: F. Achouri, K. Chouicha

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim of this study is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability. To develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G/S, the quantity of cement C and the quantity of water W. We also call another model as the model of water layer thickness and model of paste layer thickness to judge their relevance, hence the following results: the relevance of the water layer thickness model is considered as a relevant when there is a variation in the water quantity. The model of the paste layer thickness is only applicable if we considered that the paste is made with the grain value Dmax = 2.85: value from which we see a stability of the model.

Keywords: Concrete, fractal method, paste layer thickness, water layer thickness, workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
850 Development of a Non-invasive System to Measure the Thickness of the Subcutaneous Adipose Tissue Layer for Human

Authors: Hyuck Ki Hong, Young Chang Jo, Yeon Shik Choi, Beom Joon Kim, Hyo Derk Park

Abstract:

To measure the thickness of the subcutaneous adipose tissue layer, a non-invasive optical measurement system (λ=1300 nm) is introduced. Animal and human subjects are used for the experiments. The results of human subjects are compared with the data of ultrasound device measurements, and a high correlation (r=0.94 for n=11) is observed. There are two modes in the corresponding signals measured by the optical system, which can be explained by two-layered and three-layered tissue models. If the target tissue is thinner than the critical thickness, detected data using diffuse reflectance method follow the three-layered tissue model, so the data increase as the thickness increases. On the other hand, if the target tissue is thicker than the critical thickness, the data follow the two-layered tissue model, so they decrease as the thickness increases.

Keywords: Subcutaneous adipose tissue layer, non-invasive measurement system, two-layered and three-layered tissue models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
849 On Convergence of Affine Thin Plate Bending Element

Authors: Rado Flajs, Miran Saje

Abstract:

In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.

Keywords: Quadrilateral thin plate bending element, convergence, generalized patch test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
848 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: Crack size, Fatigue crack propagation, Magnesium alloys, Probability distribution, Specimen thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
847 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874
846 Gas-Liquid Flow on Smooth and Textured Inclined Planes

Authors: J.J. Cooke, S. Gu, L.M. Armstrong, K.H. Luo

Abstract:

Carbon Capture & Storage (CCS) is one of the various methods that can be used to reduce the carbon footprint of the energy sector. This paper focuses on the absorption of CO2 from flue gas using packed columns, whose efficiency is highly dependent on the structure of the liquid films within the column. To study the characteristics of liquid films a CFD solver, OpenFOAM is utilised to solve two-phase, isothermal film flow using the volume-of-fluid (VOF) method. The model was validated using existing experimental data and the Nusselt theory. It was found that smaller plate inclination angles, with respect to the horizontal plane, resulted in larger wetted areas on smooth plates. However, only a slight improvement in the wetted area was observed. Simulations were also performed using a ridged plate and it was observed that these surface textures significantly increase the wetted area of the plate. This was mainly attributed to the channelling effect of the ridges, which helped to oppose the surface tension forces trying to minimise the surface area. Rivulet formations on the ridged plate were also flattened out and spread across a larger proportion of the plate width.

Keywords: CCS, liquid film flow, packed columns, wetted area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
845 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: G. M. Ozkan, H. Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
844 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783
843 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum

Abstract:

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
842 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
841 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: Displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
840 Application of Double Side Approach Method on Super Elliptical Winkler Plate

Authors: Hsiang-Wen Tang, Cheng-Ying Lo

Abstract:

In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use.

Keywords: Super elliptical Winkler Plate, double side approach method, error bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
839 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun

Abstract:

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
838 Effects of Geometry on Intensity of Singular Stress Fields at the Corner of Single-Lap Joints

Authors: Yu Zhang, Nao-Aki Noda, Kentaro Takaishi

Abstract:

This paper discusses effects of adhesive thickness, overlap length and material combinations on the single-lap joints strength from the point of singular stress fields. A useful method calculating the ratio of intensity of singular stress is proposed using FEM for different adhesive thickness and overlap length. It is found that the intensity of singular stress increases with increasing adhesive thickness, and decreases with increasing overlap length. The increment and decrement are different depending on material combinations between adhesive and adherent.

Keywords: Adhesive thickness, Overlap length, Intensity ofsingular stress, Single-lap joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
837 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: Vacuum, thermal, flat-plate solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
836 Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing

Authors: Shams-ul-Islam, Raheela Manzoor, Zhou Chao Ying

Abstract:

A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).

Keywords: Detached flat plates, drag and lift coefficients, Reynolds numbers, square cylinder, Strouhal number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
835 Performance of Single Pass Down Stream Solar Air Collector with Inclined Multiple V-Ribs

Authors: Manivannan A, Velmurugan M

Abstract:

Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. It is attributed to the formation of a very thin boundary layer at the absorber plate surface commonly known as viscous sub-layer. Thermal efficiency of solar air heater can be improved by providing the artificial roughness on absorber plate is the most efficient technique. In this paper an attempt is made to provide artificial roughness by incorporating inclined multiple V-ribs in the underside of the absorber plate. 60˚V – ribs are arranged inclined to the direction of air flow. Performance of collector estimated theoretically and experimentally. Results of the investigation reveal that thermal efficiency of collector with multiple V-ribs increased by 14%.

Keywords: Artificial roughness, inclined multiple V-ribs, performance, Solar air collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
834 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging

Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi

Abstract:

Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.

Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
833 CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece

Authors: Chana Raksiri, Pornchai Chatchaikulsiri

Abstract:

The objective of this research is parameters optimized of the stair shape workpiece which is cut by CNC Wire-Cut EDM (WEDW). The experiment material is SKD-11 steel of stair-shaped with variable height workpiece 10, 20, 30 and 40 mm. with the same 10 mm. thickness are cut by Sodick's CNC Wire-Cut EDM model AD325L. The experiments are designed by 3k full factorial experimental design at 3 level 2 factors and 9 experiments with 2 replicate. The selected two factor are servo voltage (SV) and servo feed rate (SF) and the response is cutting thickness error. The experiment is divided in two experiments. The first experiment determines the significant effective factor at confidential interval 95%. The SV factor is the significant effective factor from first result. In order to result smallest cutting thickness error of workpieces is 17 micron with the SV value is 46 volt. Also show that the lower SV value, the smaller different thickness error of workpiece. Then the second experiment is done to reduce different cutting thickness error of workpiece as small as possible by lower SV. The second experiment result show the significant effective factor at confidential interval 95% is the SV factor and the smallest cutting thickness error of workpieces reduce to 11 micron with the experiment SV value is 36 volt.

Keywords: CNC Wire-Cut, Variable Thickness Workpiece, Design of Experiments, Full Factorial Design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4774
832 Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory

Authors: Ahmed S. Elamary

Abstract:

Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Höglund theory. This paper will be concerned with predicting the USR using Höglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR.

Keywords: Ultimate shear resistance, Plate Girder, Höglund’s theory, EC3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4948